На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека

Элементарный учебник физики. Том 3: «Колебания и волны. Оптика. Атомная и ядерная физика». Под ред. Г. С. Ландсберга. — 1985 г

Под редакцией академика
Григория Самуиловича Ландсберга

Элементарный учебник физики

Том 3: «Колебания и волны.
Оптика. Атомная и ядерная физика»

*** 1985 ***


DjVu


От нас: 500 радиоспектаклей (и учебники)
на SD‑карте 64(128)GB —
 ГДЕ?..

Baшa помощь проекту:
занести копеечку —
 КУДА?..



ФPAГMEHT УЧЕБНИКА (...) Первую подгруппу адронов образуют мезоны — сильно взаимодействующие частицы, не обладающие барионным зарядом. Как отмечалось, их следует рассматривать как кванты ядерного поля (поля сильного взаимодействия).
      Вторую подгруппу составляют барионы — частицы, обладающие барионным зарядом (см. § 233).
      Самые легкие барионы — нуклоны (нейтрон и протон) — устойчивы (нейтрон устойчив в ядрах) и вместе с электроном служат кирпичиками вещества. В конечном счете это обусловлено законом сохранения барионного заряда, который позволяет бариону исчезнуть только в паре с анти-барионом. Сохранение барионного заряда делает невозможным, например, разрушение атомов путем аннигиляции протона с электроном (превращения в у-кванты или мезоны). Так как в нашем мире антибарионов практически нет, нуклоны исчезать не могут. В этом отношении они сильно отличаются от фотонов и мезонов, которые в конечном счете исчезают (поглощаются или распадаются), передавая свою энергию (а заряженные мезоны — и электрический заряд) лептонам или нуклонам. В последние годы были открыты сотни более тяжелых и менее устойчивых мезонов и барио-нов. Были найдены закономерности в их характеристиках — массах, способах образования и распада и т. п. ***). Однако последовательной теории, которая описывала бы свойства адронов так же успешно, как квантовая теория описывает атомы и молекулы, еще нет. Нет также и ответа на более фундаментальный вопрос — почему существуют именно такие элементарные частицы (электрон, протон, фотон, нейтрино ит.д.) с такими свойствами.
      ***) Более подробно о свойствах адроиов см. § 239,
      § 235. Детекторы элементарных частиц. В гл. XXIII мы познакомились с приборами, служащими для обнаружения микрочастиц, — камерой Вильсона, счетчиком сцинтилляций, газоразрядным счетчиком. Эти детекторы, хотя и применяются в исследованиях элементарных частиц, однако не всегда удобны. Дело в том, что наиболее интересные процессы взаимодействия, сопровождающиеся взаимными превращениями элементарных частиц, происходят весьма редко. Частица должна встретить на своем пути очень много нуклонов пли электронов, чтобы произошло интересное столкновение. Практически она должна пройти в плотном веществе путь, измеряемый десятками сантиметров — метрами (на таком пути заряженная частица с энергией в миллиарды электронвольт теряет вследствие ионизации только часть своей энергии).
      Однако в камере Вильсона или газоразрядном счетчике чувствительный слой (в пересчете на плотное вещество) крайне тонок. В связи с этим получили применение некоторые другие методы регистрации частиц.
      Очень плодотворным оказался фотографический метод. В специальных мелкозернистых фотоэмульсиях каждая заряженная частица, пересекающая эмульсию, оставляет след, который после проявления пластинки обнаруживается под микроскопом в виде цепочки черных зерен. По характеру следа, оставленного частицей в фотоэмульсии, можно установить природу этой частицы — ее заряд, массу, а также энергию. Фотографический метод удобен не только из-за того, что можно использовать толстые слои вещества, но и потому, что в фотопластинке, в отличие от камеры Вильсона, следы заряженных частиц не исчезают вскоре после пролета частицы. При изучении редко случающихся событий пластинки могут экспонироваться длительное время; это особенно полезно в исследованиях космических лучей. Примеры редких событий, запечатленных в фотоэмульсии, приведены выше на рис. 414, 415; особенно интересен рис. 418.
      Другой замечательный метод основан на использовании свойств перегретых жидкостей (см. том I, § 299). При нагреве очень чистой жидкости до температуры, даже чуть большей температуры кипения, жидкость не вскипает, так как поверхностное натяжение препятствует образованию пузырьков пара. Американский физик Дональд Глезер (р. 1926) заметил в 1952 г., что перегретая жидкость мгновенно вскипает при достаточно интенсивном у-облучении: добавочная энергия, выделяемая в следах быстрых электронов, создаваемых в жидкости у-излучением, обеспечивает условия для образования пузырьков.
      На основе этого явления Глезер разработал так называемую жидкостную пузырьковую камеру. Жидкость при повышенном дазлекии нагревается до температуры, близкой, но меньшей температуры кипения. Затем давление, а с ним и температура кипения понижаются и яждкость оказывается перегретой. Вдоль траектории заряженной частицы, пересекающей в этот момент жидкость, формируется след пузырьков пара. При подходящем освещении он может быть запечттлен фотоаппаратом. Как правило, пузырьковые камеры располагают между полюсами сильного электромагнита, магнитное поле искривляет траектории частиц. Измеряя длину следа частицы, радиус его кривизны, плотность пузырьков, можно установить характеристики частицы. Сейчас пузырьковые камеры достигли высокого совершенства; работают, например, камеры, заполненные жидким водородом, с чувствительным объемом в несколько кубических метров). Примеры фотографий следов частиц в пузырьковой камере приведены на рис. 416, 417, 419, 420.
      § 236. Парадокс часов. В заключение остановимся на любопытном предсказании теории относительности Эйнштейна, которое получило прямое подтверждение в опытах с элементарными частицами. (...) Это явление можно характеризовать как замедление времени в движущихся телах. В самом деле, процессы, идущие внутри нестабильной частицы, можно рассматривать как некоторые часы, отсчитывающие время. Неподвижные часы отсчитали несколько средних времен жизни, и частица должна была бы давно распасться. Однако собственные часы быстро движущейся частицы идут медленнее — по ним прошла только малая доля среднего времени жизни т0, и частица еще «жива».
      Теория относительности распространяет этот вывод на любые физические процессы; биологические процессы не составляют исключения.
      Представим ракету, стартующую с Земли, путешествующую в космосе со скоростью, близкой к скорости света, и возвращающуюся на Землю. Часы, находившиеся на ракете, покажут меньшую продолжительность путешествия, чем часы, остававшиеся на Земле. Космонавт постареет меньше, чем его товарищи, не покидавшие Земли. В справедливость этих выводов трудно поверить, и их обозначали как «парадокс часов». Упомянутые опыты с нестабильными частицами заставляют, однако, относится к «парадоксу часов» как к научному факту. Надо заметить, что при скоростях полета порядка десятков километров в секунду, доступных в современной космонавтике, замедление хода часов ничтожно и им можно полностью пренебречь.
      § 237. Космическое излучение (космические лучи). Уже при первых исследованиях радиоактивности было замечено, что в ионизационной камере (рис. 376) наблюдается некоторый незначительный ток даже в отсутствие радиоактивных препаратов. Наличие этого тока доказывало, что какое-то излучение постоянно создает в камере ионизацию, получившую название остаточной ионизации. Вначале пытались объяснить остаточную ионизацию примесями радиоактивных веществ в почве и атмосфере. В этом случае остаточная ионизация должна была бы уменьшаться при удалении ионизационной камеры от поверхности Земли. Однако опыты, в которых ионизационные камеры поднимались на аэростатах на большую высоту, показали обратный результат. На высоте 9 км остаточная ионизация оказалась в 40 раз большей, чем на уровне Земли. Этот результат становится понятным, если допустить, что излучение, создающее остаточную ионизацию, приходит на Землю извне и на своем пути через атмосферу постепенно поглощается в ней. Дальнейшие опыты подтвердили внеземное происхождение излучения и показали также, что его интенсивность слабо зависит от положения на небе Солнца, Луны и других светил. Отсюда следовало, что излучение испускается не каким-либо отдельным небесным телом, а приходит равномерно со всех направлений мирового пространства. Ввиду этого излучению, вызывающему остаточную ионизацию, было дано название космического излучения или космических лучей.
      Природа космического излучения оказалась весьма сложной. Только в пятидесятых годах, опираясь на результаты многочисленных исследований, среди которых видное место занимают работы школы советского физика Д. В. Скобельцына, удалось составить известное представление о картине этого явления в целом. По современным представлениям первичное космическое излучение, т. е. излучение, приходящее из мировых глубин в земную атмосферу, состоит из быстро движущихся положительно заряженных частиц — протонов — ив меньшем числе — а-частиц и других ядер. Энергия первичных частиц космического излучения огромна — она измеряется миллиардами электронвольт, а в некоторых случаях доходит даже до фантастических значений 1021эВ; при этом чем больше энергия частицы, тем меньше встречается таких частиц в первичной компоненте. Относительно механизма ускорения, путем которого во Вселенной образуются частицы такой огромной энергии, существует ряд предположений, исследование которых продолжается.
      Из первичного космического излучения только малая доля доходит до поверхности Земли. Подавляющая часть первичных частиц еще в верхних слоях атмосферы сталкивается с ядрами атомов, входящих в состав воздуха. Ввиду громадной энергии первичных частиц такие соударения приводят к расщеплению атомных ядер с испусканием быстрых нейтронов, протонов и а-частиц. Кроме того, соударения частиц большой энергии с ядрами сопровождаются образованием новых частиц — различных мезонов и гиперонов (см. § 234). В зависимости от вида гипероны превращаются, в мезон и нуклон (нейтрон или протон). Мезоны превращаются в конечном счете в электроны, позитроны или у-кванты.
      Итак, в результате соударения быстрой первичной частицы с атомным ядром образуется значительное количество вторичных частиц меньшей энергии — протонов, нейтронов, а-частиц, различных гиперонов и мезонов, электронов, позитронов, у-квантов. Пример такого процесса приведен на рис. 418. Вторичные частицы, продвигаясь в атмосфере, в свою очередь размножаются за счет ядерных расщеплений и других процессов, примером которых служит образование электронно-позитронных пар у-квантами (см. § 223).
      Наряду с размножением частиц в атмосфере происходит их поглощение, аналогично тому, как происходит поглощение а-, р- и у-частиц при прохождении через вещество. В верхних слоях атмосферы преобладающим процессом является размножение, и число частиц космического излучения нарастает вплоть до высоты ~20 км над уровнем моря. Ниже этой границы главную роль играет поглощение, и интенсивность излучения падает. График зависимости интенсивности космического излучения от высоты приведен на рис. 421.
      Рис. 421. Зависимость интенсивности космического излучения от высоты над уровнем моря. На высотах выше 50 км присутствует только первичная компонента космического излучения, приходящая из мирового пространства, и интенсивность излучения не зависит от высоты. Ниже 50 км интенсивность вначале увеличивается за счет образования вторичных частиц, а затем падает за счет возрастающего поглощения в атмосфере
      Полная энергия, которую приносят космические лучи на Землю, весьма мала по сравнению с энергией, приносимой световым излучением Солнца. Поэтому влияние космического излучения на неживую природу Земли, по-видимому, невелико. В развитии жизни оно, возможно, существенно, так как ионизующие излучения увеличивают частоту мутаций и, следовательно, скорость эволюции. Исследование космического излучения имеет большое значение для познания элементарных частиц и Вселенной. Космическое излучение является естественной лабораторией, в которой разыгрываются процессы взаимодействия частиц огромной энергии, далеко превосходящей энергию частиц, ускоряемых самыми мощными лабораторными ускорителями. По мере увеличения энергии элементарных частиц возрастает богатство явлений, ими вызываемых, полнее раскрываются свойства частиц.
      Исследования космического излучения привели в свое время к открытию позитрона и ряда мезонов; подробное изучение этих частиц было проведено в дальнейшем с помощью ускорителей. Можно думать, что и в будущем изучение космического излучения будет приносить ценные данные об элементарных частицах, особенно в связи с начинающимся использованием космических лабораторий (спутников). Все больше возрастает также роль космического излучения как источника астрофизической информации, т. е. сведений о процессах, происходящих в далеких областях Вселенной, где излучение зарождается и распространяется.
      Радиоуглеродная датировка в археологии. Нейтроны космических лучей, взаимодействуя с атмосферным азотом, образуют p-активный изотоп углерода 14С, так называемый радиоуглерод (период полураспада 5730 лет): (...)
      Радиоуглерод содержится в воздухе в форме углекислоты, как и обычный углерод 12С, в пропорции (...) . Так как химические свойства всех изотопов углерода очень близки, такая же их пропорция сохраняется и в растениях, усваивающих атмосферную углекислоту, и в организме животных, питающихся растениями. Таким образом, животные и растения обладают крайне слабой, но поддающейся измерению радиоактивностью.
      После смерти животного или растения поглощение углерода прекращается и активность 14С в останках постепенно уменьшается (вдвое за каждый период полураспада, т. е. за каждые 5730 лет). Сравнивая радиоактивность ископаемых органических остатков (отнесенную к 1 г углерода) с радиоактивностью современных растений или животных, можно определить степень распада 14С, а следовательно, и возраст остатков.
      Для проверки справедливости этой идеи были проведены измерения с объектами известного возраста, в частности с образцами дерева из гробниц египетских фараонов Джо-сера и Спофру. Измеренная активность 14С хорошо соответствовала известным из рукописей датам смерти этих фараонов (примерно 2700 — 2625 лет до нашей эры). (...)
     
      Глава XXVI. НОВЫЕ ДОСТИЖЕНИЯ В ФИЗИКЕ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
      § 238. Ускорители и экспериментальная техника. За последние десятилетия в физике элементарных частиц произошел настоящий переворот, во многом изменивший наши представления о природе материи. Этот переворот был связан прежде всего с быстрым развитием ускорителей и экспериментальной техники. Рост энергии ускорителей, на которые ложится основная тяжесть исследований в области элементарных частиц, играет здесь важную роль по нескольким причинам.
      1. С ростом энергии появляется возможность образования новых типов элементарных частиц с большими массами. При меньших энергиях такие частицы просто не могут рождаться в силу законов сохранения энергии и импульса (порог по энергии — см. упражнение 58 к гл. XXV).
      2. Ускорители можно сравнить с гигантскими микроскопами, которые позволяют изучать пространство на очень малых расстояниях, сравнимых с длиной волны де Бройля для ускоренных частиц. Так, частицы с энергией 1 ТэВ = = 103 ГэВ характеризуются длиной волны де Бройля. С их помощью можно зондировать области пространства вплоть до 10-1в см, где могут проявляться какие-то новые закономерности физики микромира, не замеченные на больших расстояниях.
      3. С ростом энергии частиц меняются свойства взаимодействий между ними и характеристики уже известных процессов. Может оказаться, что определенные черты этих явлений при высоких энергиях начинают проявляться более четко. Именно в опытах при очень больших энергиях удалось установить об4цую природу слабых и электромагнитных сил.
      В последние годы были созданы гигантские, даже по сравнению с огромным Серпуховским ускорителем (рис. 393), ускорители, позволившие примерно на два порядка увеличить энергию, доступную для образования новых частиц. При этом важную роль начали играть опыты на так называемых ускорителях-накопителях со встречными пучками.
      Чем же различаются между собой эти ускорители?
      В опытах на «обычных» ускорителях, или, как еще говорят, на ускорителях с фиксированными мишенями, исследуются процессы взаимодействия ускоренных частиц с «неподвижными мишенями» — нуклонами и ядрами атомов вещества, из которого сделаны мишени. При этом только сравнительно малая часть энергии ускоренных протонов или электронов может быть затрачена «полезным образом» — на образование новых частиц. Так как налетающие на мишень бомбардирующие частицы имеют большой начальный импульс, то, в соответствии с законом сохранения, этот импульс должен уноситься всеми вторичными частицами, образующимися при взаимодействии. Эти частицы, конечно, будут обладать и значительной кинетической энергией. Таким образом, большая часть начальной энергии переходит в кинетическую энергию продуктов ядерной реакции, и только сравнительно небольшая ее доля может быть затрачена на образование новых частиц.
      Напомним решение задачи 58 (гл. XXV), в которой было показано, что для образования протон-антипротонной пары в реакции первичный протон должен обладать кинетической энергией 1VK>6 тс2, хотя «полезные затраты» энергии составляют всего 2 тс2. Вся остальная энергия переходит в кинетическую энергию вторичных частиц. Подобная картина имеет место и в других процессах.
      В отличие от ускорителей с фиксированными мишенями, накопители на встречных пучках позволяют использовать всю начальную энергию. Основная идея здесь заключается в том, чтобы создать два очень интенсивных и хорошо сфокусированных пучка ускоренных частиц и, направив их навстречу друг другу, осуществить лобовое соударение между ними. При этом суммарный импульс двух сталкивающихся частиц равен нулю, и образующиеся вторичные частицы могут обладать очень малой кинетической энергией (порог рождения соответствует образованию покоящихся частиц). Так, при встречных соударениях двух протонов с кинетическими энергиями уже могут рождаться протон-антипротонные пары, и мы имеем значительный выигрыш в энергии.
      Совсем недавно в Европейском центре ядерных исследований (ЦЕРН, Женева) были проведены опыты со встречными пучками протонов и антипротонов, причем энергия каждого пучка составляла 270 ГэВ. В этих экспериментах были найдены частицы с массой, почти в 100 раз превосходящей массу протона. Для опытов с фиксированной мишенью с такой же «полезной энергией» потребовалось бы создание ускорителя, рассчитанного на энергию 155 ТэВ!
      Однако было бы неправильно думать, что следует создавать только ускорители-накопители со встречными пучками. Ускорители с фиксированными мишенями, уступая накопителям по доступной энергии, обладают в свою очередь рядом важных преимуществ. Прежде всего становится возможным проводить исследования с разнообразными пучками нестабильных или нейтральных частиц*), которых нет на ускорителях со встречными пучками. Кроме того, на ускорителях с фиксированными мишенями можно изучать более редкие явления, так как здесь удается получить значительно большее число соударений. Поэтому исследования с «обычными» ускорителями и со встречными пучками взаимно дополняют друг друга и вместе дают очень важную информацию о физике элементарных частиц. В табл. 12 приведены основные параметры самых больших существующих и строящихся ускорителей.
      Для проведения опытов на современных ускорителях, помимо больших пузырьковых камер (§ 235), потребовалось создание огромных и очень сложных экспериментальных установок, которые по своим масштабам сравнимы с самими ускорителями (рис. 422). В состав этих установок входят большие магнитные спектрометры, тысячи быстродействующих сцинтилляционных счетчиков, десятки тысяч газоразрядных детекторов, очень напоминающих пропорциональные счетчики (о таких счетчиках говорилось в § 213). Эти и другие приборы, входящие в экспериментальные установки, позволяют определять траектории частиц,
      *) В опытах на ускорителях с фиксированными мишенями формируются пучки вторичных заряженных частиц с определенными импульсами — я-мезонов, протонов, мюонов и других частиц. При этом используются отклонения частиц в магнитных полях (обратно пропорциональные их импульсам). Применение магнитных полей с определенными сложными конфигурациями позволяет фокусировать пучки частиц (подобно тому как оптические линзы фокусируют световые пучки). Пучки нейтральных частиц выделяются коллиматорами и очищаются от заряженных частиц магнитными полями, измерять их энергию, импульс, скорость, ионизацию, идентифицировать частицы и подробно исследовать характеристики взаимодействий. В состав таких установок обязательно входят несколько электронно-вычислительных машин,
      Рис. 422. Общий вид экспериментальной установки UA-1, на которой проводились исследования до-соударений на самом большом в мире ускорителе-накопителе со встречными протонным и антипротонным пучками (SPS-коллайдер ЦЕРН, см. табл. 12). Установка UA-1 — это огромный магнитный спектрометр для измерения импульсов вторичных частиц, образующихся в до-соударениях. Частицы регистрировались в газоразрядной камере (она видна в центре установки). Камера представляет собой совокупность большого числа газоразрядных детекторов частиц, напоминающих пропорциональные счетчики. С помощью этих детекторов определяются траектории частиц. В состав установки входит также большое число сцинтилляционных счетчиков
      с помощью которых быстро обрабатывается полученная информация, настраиваются многочисленные элементы аппаратуры, контролируется затем правильность их работы, получаются первые физические результаты, позволяющие следить за проведением эксперимента в целом. Полученные в процессе измерений огромные объемы информации после некоторого предварительного отбора записываются на магнитные ленты и затем обрабатываются на самых больших и быстродействующих электронно-вычислительных маши-
      Рис. 423, Снимок с дисплея ЭВМ, работающей вместе с установкой UA-1 (рис. 422). На снимке зарегистрировано одно из до-соударений при энергии 270 ГэВ. Информация со всех детекторов установки, обработанная на ЭВМ, позволяет определить траектории частиц и получить полную картину взаимодействия, несколько напоминающую снимки с пузырьковых камер. Импульсы частиц измерялись по кривизне их треков в магнитном поле. Как видно из снимка, взаимодействия при таких высоких энергиях носят очень сложный характер: в них образуется большое число вторичных частиц
      нах. На рис. 423 приведен снимок с дисплея ЭВМ, на котором показан вид одного из событий, зарегистрованных на установке UA-1 (рис. 422). Вот с какими сложными процессами приходится иметь дело в современном физическом эксперименте.
      § 239. Адроны и кварки. Исследования на больших ускорителях сильно расширили наши представления об элементарных частицах. Прежде всего это касается самого
      многочисленного семейства частиц — адронов, т. е. частиц, участвующих в сильных взаимодействиях. В настоящее время известно несколько сотен таких адронов — барионов (частиц с барионным зарядом В = +1), антибарионов (5 = = — 1) и мезонов, у которых барионный заряд равен нулю. Большинство этих частиц распадается на другие адроны из-за сильных взаимодействий. Они имеют малые времена жизни, характерные для ядерных процессов (~10~23 с, см. § 234). Столь короткие временные интервалы не могут быть измерены непосредственно и определяются из косвенных данных. Однако есть адроны и с временами жизни 10-8 — 10-13 с. Распады этих долгоживущих (по ядерным масштабам) частиц обусловлены слабыми взаимодействиями.
      Пока элементарных частиц было известно немного, они считались «кирпичиками» мироздания: из них строилось все многообразие атомов. Теперь же число элементарных частиц превышает число химических элементов, и само понятие «элементарная частица» для адронов явно утратило свое первоначальное значение.
      В физике элементарных частиц нет сейчас законченной теории, которая позволила бы объяснить все основные явления, выявить главнейшие закономерности и достигнуть той же степени понимания, которая существует в классической механике или электродинамике. В подобной ситуации особое значение приобретают попытки феноменологического анализа и классификации физических явлений, основанные на определенных законах сохранения. Эти законы позволяют ориентироваться в том, какие процессы могут, а какие не могут происходить в природе.
      KOHEЦ ФPAГMEHTA УЧЕБНИКА

 

 

На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека


Борис Карлов 2001—3001 гг.