На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека

Методика арифметики в начальной школе. Волковский Д. Л. — 1937 г

Д. Л. Волковский

Методика арифметики
в начальной школе

*** 1937 ***


DjVu


От нас: 500 радиоспектаклей (и учебники)
на SD‑карте 64(128)GB —
 ГДЕ?..

Baшa помощь проекту:
занести копеечку —
 КУДА?..



      ЧАСТЬ ПЕРВАЯ.
      ЦЕЛЫЕ ЧИСЛА.
      Целые числа составляют основное содержание математики в начальной школе. Поэтому на изучение методики целых чисел надо обратить особое внимание.
      Чтобы учащиеся лучше усвоили нумерацию и действия с целыми числами, принято изучение целых чисел разделять на следующие концентры (круги, разделы):
      1) числа первого десятка;
      2) числа второго десятка;
      3) полные десятки первой сотни;
      4) числа от 1 до 100;
      5) числа от 1 до 1000;
      6) числа любой величины.
     
      I. ЧИСЛА ПЕРВОГО ДЕСЯТКА.
      Для выделения в особый концентр чисел первого десяткд имеются следующие основания: 1) до 10 каждое число рассматривается как группа однородных единиц, тогда как в числах выше первого десятка приходится рассматривать число состоящим из двух или трех и более групп различных единиц (простых единиц, десятков, сотен и т.д.); 2) для каждого числа существуют особое название и особый знак (цифра); 3) здесь кладется основа таблиц сложения и вычитания, которые служат краеугольным камнем всех остальных действий; 4) разложение чисел на десятичные группы как основа счисления не может быть приложено к числам, меньшим десяти, а потому все действия над числом сводятся к счету.
      Так как определенные числовые представления создаются у детей сравнительно поздно и постепенно, то целесообразно в пределе первого десятка изучать каждое число в отдельности, переходя от одного числа к другому по их естественному ряду. При изучении каждого числа в отдельности дается представление о числе (восприятие числа).
      Первоначальное обучение должно быть в высшей степени конкретным, наглядным.
      Дети сначала должны производить непосредственное наблюдение над вещами и их числовыми отношениями.
      Затем надо переходить к изображению предметов (картинкам, ч еловым фигурам, чертежам).
      Далее можно переходить к таким упражнениям, где является на помощь воображение, т. е. к упражнениям над предметами, известными ученикам, но не находящимися перед их глазами.
      И, наконец, можно переходить к отвлеченному числу.
     
      § 1. ИЗУЧЕНИЕ ЧИСЛА 4.
      Приведем пример ознакомления детей с числом 4. Это ознакомление складывается из следующих моментов:
      1. Построение числовой фигуры 4 и счет. Отложив на классных счетах 3 шарика (на одной проволоке 2, а на другой 1), учитель спрашивает: "Сколько здесь шариков положено?" Затем учитель кладет четвертый шарик, помещая его под вторым шариком на следующей, пониже, проволоке. Тогда числовая фигура примет такой вид (рис. 1). "Сколько теперь шариков видите?" (4.) "Сосчитайте и покажите 1, 2, 3, 4 шарика".
      2. В восприятии предметов участвуют зрение, слух и мускульное чувство. "Возьмите каждый в руки по 4 палочки или отложите по 4 кубика".
      3. В восприятии предметов участвуют зрение и слух. "Смотрите и слушайте, сколько раз я ударю карандашом по столу".
      4. В восприятии предметов участвует одно зрение. "Посмотрите на классную комнату и назовите те предметы, которых в ней по 4". (4 стены.)
      5. Упражнение с картинками. Дети открывают задачник по математике или картинки на особых листах бумаги и считают те предметы, которые нарисованы по 4.
      6. Работа по воображению. "Каких частей тела у лошади по 4?" (4 ноги.) "Сколько крыльев у бабочки?" "Назовите 4 различных животных, 4 различных птицы".
      7. Отвлеченный счет. "Считайте от 1 до 4". (Один, два, три, четыре.) "Считайте назад от 4 до 1". (Четыре, три, два, один.)
      Примечание. Когда дети познакомятся с прямым счетом, тогда можно познакомить их с порядковым счетом: первый, второй, третий и т. д. Этот счет имеет большое практическое применение. Для детей, овладевших прямым счетом, порядковый счет не представляет затруднений. Во всяком случае, он легче обратного счета.
      8. Место одного числа в ряду других чисел. "Какое число следует за двумя? за тремя? Какое число стоит перед четырьмя? Перед двумя? Перед тремя? Какое число находится между двумя и четырьмя? Между какими числами находится 3?"
      9. Сравнение числа 4 с предыдущими числами. "Смотрите первую клеточку (рис. 2). Сколько в ней точек?" (3.) "В следующей (второй) клеточке сколько точек?" (4.) "Где больше точек: в первой или второй клеточке? Сколько точек в третьей клеточке?" (2.) "Где меньше точек: во второй или третьей клеточке?"
      Рис. 1.
      Сколько точек в четвертой клеточке?" (1.) "В какой клеточке больше всего точек?" (Во второй.) "Сколько их там?" (4.) яВ какой клеточке меньше всего точек?" (В четвертой.) "Сколько их там?" (1.)
      "Что больше: 4 палочки или 2 палочки? Что меньше: 3 картинки или 4 картинки? Что больше: 2 или 4? Что меньше: 4 или 3? Какое число меньше 4, но больше 2?
      10. Состав числа из меньших чисел. Это упражнение является подготовительным к усвоению арифметических действий сложения и вычитания и облегчит усвоение результатов этих действий. Нет необходимости добиваться запоминания детьми состава каждого числа непременно из всех групп. Достаточно, если дети усвоят состав каждого числа из более легких групп.
      Учитель на классных счетах откидывает 3. "Сколько шариков вы видите?" (3.) "Сколько шариков я прибавил к ним?" (1.) (Учитель прибавляет 1 шарик так, чтобы получилась знакомая числовая фигура 4.) "Сколько шариков теперь вы видите?" (4.) "Сколько же будет шариков — к 3 шарикам прибавить 1 шарик?"
      Отделив аккуратно карандашом на числовой фигуре 4 три шарика, учитель спрашивает: "Сколько шариков по правую сторону карандаша?" (1.) "Сколько шариков по левую сторону карандаша?" (3.) "Сколько всего шариков?" (4.) "Сколько же будет всего шариков — 1 шарик да 3 шарика?"
      "Сколько шариков я закрыл рукой?" (1.) "Сколько шариков вы видите?" (3.) "Сколько же будет шариков — 4 шарика без 1 шарика?"
      "Сколько теперь шариков закрыл я рукой?" (3 шарика.) "Сколько шариков вы видите? Сколько же будет шариков — 4 шарика без 3 шариков?"
      11. Загадки. Отгадайте загадки: а) "Под одной шляпой 4 брата стоят". (Стол.) б) "Четыре крыла и не птица, крыльями машет, а ни с места". (Ветряная мельница.)
      Письменные упражнения.
      Письмо 4 палочек. Положив на стол 4 кубика, 4 карандаша 4 книги, учитель спрашивает детей: "Сколько у меня здесь кубиков? А сколько карандашей? А сколько книг?"
      "А как записать, что вот здесь 4 кубика, а не больше и не меньше; что вот 4 карандаша, а не больше и не меньше; что вот здесь 4 книжки, а не больше и не меньше?"
      Дети, обозначавшие раньше числа 1, 2 и 3 палочками, сделают это без всякого затруднения.
      Рисование числовой фигуры 4. "Мы сейчас отмечали 4 предмета 4 палочками; 4 предмета можно отметить по-другому: их можно отметить 4 точками, расположенными вот так“ (рис. 3).
      "Вместо точек мы будем рисовать кружочки: так удобнее". (Учитель рисует на доске.) "Нарисуйте по 4 кружочка у себя в тетрадях".
      Рисование числовой фигуры 4 может служить материалом для самостоятельной работы детей.
      Знакомство с четырехугольником. Учитель рисует четырехугольник по частям в 4 приема. "Покажите и сочтите, сколько углов у этого рисунка". (У этого рисунка четыре угла, поэтому он называется четырехугольником.) "Вот один угол. Покажите остальные углы вы". (У этого рисунка четыре угла, поэтому он называется четырехугольником.) "Вот один угол. Покажите остальные углы вы. А вот стороны у четырехугольника. Сколько сторон у него? Покажите их. Что в классе имеет вид четырехугольника?" (Потолок, пол, доска, стена, крышка стола.) "Нарисуйте у себя в тетрадке по 4 четырехугольника".
      Рисование четырехугольника может служить материалом для самостоятельной работы детей.
      Можно поупражнять детей в рисовании носилок, стола и стакана в простейшем виде, ибо в начертание этих предметов входят те же самые линии, что в цифру 4. Рисование этих предметов может быть материалом для самостоятельного занятия детей.
      Далее идет знакомство с письмом цифры 4.
     
      § 2. ПИСЬМО ЦИФР.
      Характер письма цифр.
      1. Начертание цифр должно быть простым и четким. Точно так же надо обращать большое внимание на правильное изображение цифр, ибо оно для четкости письма имеет еще большее значение, чем четкое изображение букв: ошибочное чтение в последнем случае легко поправимо, неправильное же чтение чисел ведет к очень неприятным последствиям.
      Простое, но правильное, четкое начертание цифр способствует более скорому письму их, а это имеет немалое значение.
      2. Что касается порядка письма цифр, то здесь существуют два мнения: одни из методистов советуют обучать письму цифр в их естественной последовательности, начиная с 1; другие делят цифры на группы по трудности их начертания: к первой группе относят цифры — 1, 4, 7, различно их располагая, или так, как сейчас указано, или же так — 4, 7, 1; ко второй группе — О, 6, 8, 9 или же 2, 3, 5; к третьей группе — 2, 3, 5 или же О, 6, 9 и к четвертой группе — 8.
      Вторая группировка уместнее в том случае, если проходить цифры после изучения первого десятка, как это делают некоторые методисты. При том же расположении материала, когда изучается каждое число в отдельности, такой порядок менее уместен.
      Относительно обозначения числа 10 следует только показать, как это число пишется, не объясняя того, что означают — нуль, цифра на первом месте, цифра на втором месте, ибо это преждевременно по своей трудности.
      3. Приступая к письму цифр, учитель сначала сам должен показать на доске, из каких частей (элементов) состоит каждая цифра, изображая ее для этого по частям; затем он должен предлагать детям писать на доске цифры до тех пор, пока не убедится, что дети правильно пишут их; потом предлагает детям писать цифры в тетрадях, просматривая эти тетради (проходя между партами) и исправляя эти неправильности здесь же в классе.
      Приведем образец знакомства с цифрой 4.
      Письмо цифры 4. Так как печатное начертание цифр несколько отличается от письменного, то необходимо познакомить детей с тем и другим начертаниями, причем сначала с печатным, ибо для ребенка много легче узнать цифру глазами, чем написать ее. Это можно сделать так: "Как мы отмечали раньше 4 кубика, 4 карандаша, 4 книжки?" (4 черточками, 4 кружочками.) "Теперь научимся отмечать 4 каких-либо предмета по-другому, короче". Учитель показывает детям печатную цифру 4 (на особой картонке, по примеру букв), говоря: "Этот знак — цифра четыре. Повторите, как Рис. 4. я назвал?" (Цифра 4.) "Запомните ее". Затем учитель говорит: "Этим знаком отмечают 4 каких-либо предмета — 4 человека, 4 лошади, 4 птицы, 4 тетради и т. д.; короче говоря, число 4. Смотрите, я покажу вам, сколько мальчиков сидит на скамейке, а вы прочитайте". Учитель показывает цифру 4. "Сколько же мальчиков сидит на скамейке?"
      Потом учитель, предупредив детей, чтобы они следили за ним, пишет цифру 4 по частям в 3 приема.
      Написав на доске прямую, несколько наклонную черту, учитель спрашивает, что он написал. (Прямую наклонную палочку.) Затем учитель к прямой наклонной черте присоединяет прямую лежачую черту. Наконец, к полученному знаку справа присоединяется прямая, несколько наклонная черта, и таким образом получается цифра 4. Написав цифру 4, учитель спрашивает детей: "Из скольких же частей состоит цифра 4? Какая 1-я часть?" (Прямая стсячая палочка.) "Какая 2-я?“ (Прямая лежачая палочка.) "Какая 3-я?“ (Прямая стоячая палочка.) (рис. 4).
      Это письмо на доске по частям цифры 4 делается учителем раза 2 — 3, чтобы дети прочнее запомнили те составные части, из которых образована цифра 4. Потом учитель спрашивает: "Похожа ли письменная цифра 4 на печатную?" Дети отвечают, что похожа.
      Затем учитель вызывает к доске нескольких детей (лучшего, среднего и плохого) писать эту цифру, пока не убедится, что они правильно умеют писать ее. Далее предлагает всем детям написать эту цифру в тетрадях по одному разу, смотрит, ходя между столами, тетради и указывает или же и сам исправляет неправильности в письме. Потом заставляет детей писать эту цифру в тетрадях по нескольку раз.
      Письмо цифры 1. Эта цифра пишется в 1 прием: ведется прямая черта сверху вниз одинаковой толщины. Вот образец письменной цифры 1
      Письмо цифры 2. Для облегчения написания цифры 2 надо напомнить детям, что цифра 2 похожа на крючок для ужения рыбы.
      Затем учитель пишет на доске цифру по частям, говоря: "Вот я сперва веду тонкую черту сверху вниз, затем — тонкую черту снизу вверх, далее — черту сверху вниз с утолщением вверху и тонко внизу, т. е. получается вот такая первая часть цифры 2.
      После этого учитель пишет вторую часть цифры 2, волнистую линию, говоря: "Сперва я веду тонкую черту снизу вверх, затем толстую черту сверху вниз и, наконец, тонкую черту снизу вверх, т. е. получается вот такая вторая часть цифры 2 (рис. 5).
      ?ис. 5. Затем учитель пишет цифру 2 в 4 приема: сперва тонкую черту сверху вниз, затем тонкую черту снизу вверх; далее черту сверху вниз с утолщением вверху и тонко внизу и, наконец, "хвостик" внизу (волнистую линию).
      Вот образец письменной цифры 2 (рис. 6). Начертание цифры 2 особенно трудно дается детям,
      3 поэтому надо упражняться в письме ее возможно больше. Письмо цифры 3. Цифра 3 пишется в 3 приема: сначала верхний "крючок" (полуовал), затем нижний "крючок" (полуовал) и, наконец, точка у нижнего "крючка". Вот образец письменной цифры 3 (рис. 6).
      Рис. 6. Письмо цифры 5. Цифра 5 пишется в 3 приема: сначала средняя часть цифры (прямая стоячая черта),
      5 затем нижняя часть (полукружочек) и, наконец, верхняя часть (прямая лежащая черта).
      Вот образец письменной цифры 5 (рис. 7).
      Письмо цифры 6. Цифра 6 пишется в 2 приема: сперва левый полукружок с продолжением вверх, причем черта ведется сверху вниз с утолщением посредине; затем пишется правый полукружок без перерыва черты после написания левого полуовала.
      Вот образец письменной цифры 6 (рис. 7).
      Письмо цифры 7. Цифра 7 пишется в 2 приема: рис 7 сначала пишется волнистая линия, потом пишется прямая стоячая черта. Написав волнистую линию, учитель спрашивает детей: "В какой цифре встречалась такая черта?" (В цифре 2.) Написав прямую стоячую черту с утолщением внизу, учитель спрашивает: "А эта черта на какую цифру похожа?" (На цифру 1 ) "Еще в какой цифре встречалась эта черта?" (В цифре 4.) Так как учащиеся нередко так неотчетливо пишут цифру 7, что ее легко смешать с цифрой 4, то необходимо обратить особое внимание на письмо этих цифр, чередуя письмо их.
      Вот образец письменной цифры 7 (рис. 8).
      Письмо цифры 8. Цифра 8 пишется в 2 приема: во-первых, пишут верхний левый полуовал, ведя тонкою черту снизу вверх, и верхний правый полуовал, ведя черту сверху вниз с утолщением (нажимом), во-вторых, нижний левый полуовал, ведя черту сверху вниз с нажимом, и нижний правый полуовал, ведя тонкую черту снизу вверх.
      Вот образец такого письма цифры 8 (рис. 9).
      Цифру 8 можно писать в 2 приема и так: во-первых, пишут верхний левый полуовал, ведя черту сверху вниз с нажимом, и нижний правый полуовал, ведя черту сверху с нажимом; во-вторых, нижний полуовал, ведя тонкую черту снизу вверх, верхний правый полуовал, ведя тонкую черту снизу вверх (рис. 10).
      И тот и другой способы начертания цифры 8 применимы, но первый предпочтительнее.
      Письмо цифры 9. Цифра 9 пишется в 2 приема: сначала пишут левый полуовал, ведя тонкую черту снизу вверх, затем правый полуовал, ведя черту сверху вниз с продолжением ее за овал и с утолщением посредине.
      Вот образец письменной цифры 9 (рис. 10).
      Следует обратить внимание детей на то, что цифра 9 пишете точно так же, как и цифра 6, с той только разницей, что у цифры 6 овал внизу, а у цифры 9 — Рис. 10. вверху.
      Письмо числа 10. Письмо этого числа сравнительно с предыдущими числами представляет ту особенность, что каждое из предыдущих чисел обозначается одним знаком, а это число обозначается двумя знаками. На это надо обратить внимание детей, причем не следует входить в объяснение того, что означает цифра на первом месте, что — на втором месте, что означает нуль. Это преждевременно для детей. Об этом будет речь при изучении полных десятков первой сотни. Теперь достаточно ограничиться сообщением, что число 10 пишется двумя знаками: сначала пишется цифра 1, потом пишется кружочек, который называется нулем. Письмо числа 10 не представляет затруднения для детей, ибо оба знака встречались раньше: первый знак есть цифра 1, а второй знак 0 (нуль) встречался при письме цифр 6 и 9. На сходство нуля с овалами цифр 6 и 9 следует обратить внимание детей.
      Цифру нуль можно писать в 2 приема: сначала пишут левый полуовал, ведя черту сверху вниз с нажимом, потом правый полуовал, ведя тонкую черту снизу вверх.
      Если число 10 пишется по клеткам, то надо писать его в Двух клетках, каждый знак в особой клетке. При письме числа Ю несколько раз в одной строчке после каждого числа надо оставлять промежуток в две клетки. Это способствует ясности письма.
      Смотри образец письма цифрами числа 10.
      KOHEЦ ВТОРОЙ ГЛАВЫ И ФPAГMEHTA КНИГИ

 

 

На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека


Борис Карлов 2001—3001 гг.