На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека

Перельман Я. «Межпланетные путешествия». Иллюстрации - Г. Б. Ибах. - 1935 г.

Яков Исидорович Перельман. Фото 1907 и 1934 гг.

Яков Исидорович Перельман
«Межпланетные путешествия»
Иллюстрации - Г. Б. Ибах. - 1935 г.


DjVu


От нас: 500 радиоспектаклей (и учебники)
на SD‑карте 64(128)GB —
 ГДЕ?..

Baшa помощь проекту:
занести копеечку —
 КУДА?..



 


СОДЕРЖАНИЕ

Предисловие автора 3
Предисловие К. Э. Циолковского к 6-му изд 5
1. Величайшая греза человечества 7
2. Всемирное тяготение и земная тяжесть 9
3. Можно ли укрыться от силы тяжести? 18
4. Можно ли ослабить земную тяжесть? 27
5. Вопреки тяжести — на волнах света 30
6. Из пушки на Луну. Теория 37
7. Из пушки на Луну. Практика 50
8. К звездам на ракете 58
9. Устройств э пороховой ракеты 69
10. История пороховой ракеты 74
11. Летательная машина Кибальчича 85
12. Источник энергии ракеты 94
13. Механика полета ракеты 100
14. Звездная навигация. Скорости, пути, сроки 109
15. Проекты К. Э. Циолковского 123
16. Искусственная Луна. Внеземная станция 135
17. Опыты с новыми ракетами « 139
18. Два несбыточных проекта 157
19. Жизнь на корабле вселенной 162
20. Опасности звездоплавания 170
21. Заключение 191
Приложения 192
1. Сила тяготения —
2. Падение в мировом пространстве 194
3. Динамика ракеты 200
4. Начальная скорость и продолжительность перелетов 212
3. Внеземная станция 223
6. Давление внутри пушечного ядра 226
7. Невесомость свободно падающих тел 227
8. Через океан на ракете 230
9. В ракете на Луну 237
10. Стратосфера 246
11. Межпланетная сигнализация 250
12. Книги по ракетному летанию и звездоплаванию 258
13. События и годы 266

 

      ПРЕДИСЛОВИЕ АВТОРА
     
      Первое издание этой книги, двадцать лет назад, я напутствовал следующими строками:
      «Было время, когда признавалось невозможным переплыть океан. Нынешнее всеобщее убеждение в недосягаемости небесных светил обосновано в сущности не лучше, нежели вера наших предков в недостижимость антиподов. Правильный путь к разрешению проблемы заатмосферного летания и межпланетных путешествий уже намечен, — к чести русской науки, — трудами нашего ученого. Практическое же разрешение этой грандиозной задачи может осуществиться в недалеком будущем.
      «Этой маленькой экскурсией в область космической физики автор, помимо прямой задачи, преследует и другую цель: он желал бы до некоторой степени рассеять существующее в публике предубеждение против небесной механики и физики, как знаний слишком отвлеченных, неспособных будто бы дать пищу живому уму. Наука, которая открывает возможность успешно соперничать в полете воображения с фантазией остроумнейших романистов, проверять н исправлять их смелые замыслы, наука, указывающая пути осуществления величайших грез человечества, должна перестать казаться сухой и скучной. Автор надеется, что простейшие сведения из этой области знания, которые рассеяны в настоящей книге, заронят в уме любознательного читателя интерес к изучению механики и физики Вселенной и возбудят желание ближе познакомиться с фундаментом величественной науки о небе.
      «Чтение этой книги не требует никаких специальных познаний. Материал, предназначенный для более подготовленных читателей, отнесен в отдел Приложений».
      За два десятилетия, протекшие со времени выхода в свет первого издания этой книги, предмет ее пережил стремительную эволюцию. Из проблемы чисто теоретической заатмосферное летание успело вырасти в практическую задачу современной техники. Оно перестало быть мечтой и начинает претворяться в действительность на глазах нынешнего поколения.
      Столь значительная перемена не могла, конечно, не сказаться на содержании книги, отразившей в десяти своих изданиях последовательные этапы развития проблемы за-атмосферного летания. Каждое новое издание перерабатывалось, исправлялось, пополнялось целыми главами. Новый текст нельзя было механически присоединять к прежнему, потому что новые достижения не только обогащали содержание той или иной главы, но и меняли ее перспективу: приходилось всю главу составлять заново. Параллельно с расширением материала рос и объем книги. Настоящее, 10-е издание почти втрое больше первого. И это — несмотря на то, что книга рассматривает преимущественно лишь принципиальные, физико-астрономические стороны проблемы, без углубления в конструктивные частности.
      По форме изложения книга в основном тексте попреж-нему остается сочинением популярным. Ее цель — правильно ориентировать читателя, ознакомить с главными вопросами, рассеять предубеждение против осуществимости нового рода транспорта, не затушевывая в то же время стоящих на его пути трудностей. Чтение книги должно служить ступенью к проработке существующей специальной литературы. Литература эта множится с каждым годом; если при первом своем появлении «Межпланетные путешествия» были единственной в мире отдельно изданной книгой по своему предмету, то сейчас имеется уже известный выбор книг на эту тему, популярных и научных, русских и иностранных.
      Излишне добавлять, что и в настоящее, 10-е издание понадобилось внести ряд изменений по сравнению с предшествовавшим, несмотря на то, что оба издания разделены промежутком всего в один год.
      Я. П.
     
      ПРЕДИСЛОВИЕ К. Э. ЦИОЛКОВСКОГО К ШЕСТОМУ ИЗДАНИЮ
     
      В 1903 г. в петербургском ежемесячном журнале «Научное Обозрение» (№ 5) появилась моя математическая работа о ракетном снаряде для заатмосферного летания: «Исследование мировых пространств реактивными приборами». Журнал был мало распространенный и скорее философский и литературный, а никак не технический. Поэтому, кроме немногих иностранцев, никто моей рабопгы не заметил. После торжества авиации я получил возможность возвратиться в печати к затронутой теме: в 1911 — 1912 гг. была опубликована в «Вестнике воздухоплавания» моя новая работа под тем же заглавием. Она содержала резюме первой работы и значительное ее развитие. Работа обратила на себя внимание специалистов, — но широким кругам читателей идеи мои стали известны лишь с того времени, когда за пропаганду их принялся автор «Занимательной физики» Я. И. Перельман, выпустивший в 1915 г. свою популярную книгу «Межпланетные путе* шествия». Это сочинение явилось первой в мире серьезной, хотя и вполне общепонятной книгой, рассматривающей проблему межпланетных перелетов и распространяющей правильные сведения о космической ракете. Книга имела большой успех и выдержала за истекшие 14 лет пять изданий. Автор давно известен своими популярными, остроумными и вполне научными трудами по физике, астрономии и математике, написанными, к тому же, чудесным языком и легко воспринимаемыми читателями.
      Горячо приветствую появление настоящего, шестого по счету, издания «Межпланетных путешествий», пополненного и обновленного сообразно продвижению этой проблемы новейшими исследованиями.
      К. Циолковский.
     
     
      Проложенная Ньютоном дорога
      Страданий облегчила тяжкий гнет;
      С тех пор открытий сделано уж много,
      И верно мы к Луне когда-нибудь,
      Благодаря парам, направим путь.
      Байрон («Дон Жуан», 1823 г.).
     
     
      1. ВЕЛИЧАЙШАЯ ГРЁЗА ЧЕЛОВЕЧЕСТВА
     
      Мысль о путешествиях на другие планеты, о странствовании в межзвездных пустынях недавно была только заманчивой грёзой. Рассуждать на эту тему можно было раз&е лишь так, как говорили об авиации несколько веков назад, в эпоху Леонардо да-Винчи. Но сейчас нет уже сомнений, что подобно тому, как авиация из красивой мечты превратилась в повседневную действительность, так в недалеком будущем осуществится и мысль о космических путешествиях. Наступит день, когда небесные корабли-звездолеты ринутся в глубь Вселенной и перенесут бывших пленников Земли на Луну, к планетам — в другие миры, казалось бы навеки недоступные для земного человечества.
      Двести-триста лет назад, когда воздухоплавание было только фантастической грёзой, вопрос о межзвездных полетах казался тесно связанным с проблемой летания и плавания в атмосфере.
      Но вот мы путешествуем уже в воздухе над горными хребтами и пустынями, летим через материки и океаны, побывали над полюсом, облетели кругом всю планету, словом — добились сказочных успехов в деле летания в воздухе. Более того: в самые последние годы человек стал проникать в высшие, сильно разреженные слои атмосферы, в область стратосферы, где невозможно дышать из-за недостатка кислорода и где господствует мороз в 50 — 90°. Естественной является мысль, что покорение заатмосферных высот и достижение небесных светил — не столь уж далеки. Однако это не так: на пути к полетам в мировое пространство делаются сейчас лишь первые скромные шаги и притом вовсе не теми средствами, какими пользуются авиация и воздухоплавание.
      Иначе и быть не может: полет в воздухе и полет в пустоте — проблемы совершенно разные. Воздушные шары поддерживаются на высоте выталкивающим действием окружающего воздуха. Где воздуха нет, там всякий воздушный шар, чем бы он ни был наполнен, должен падать вниз как камень. Специалисты утверждают, что никогда в будущем воздушные шары не поднимутся выше 40 километров, т. е. выше тех слоев атмосферы, где воздух разрежен в 300 — 400 раз. Что касается самолетов, то, с точки зрения механики, они движутся так же, как и пароход или паровоз: колеса паровоза отталкиваются от
      рельсов, винт парохода — от воды, пропеллер аэроплана — от воздуха. Но в заатмосферных пустынях, в мировом пространстве нет среды, на которую можно было бы так или иначе опереться.
      Значит, чтобы осуществить межпланетные полеты, техника должна обратиться к другим приемам летания; она должна выработать такой аппарат, который мог бы передвигаться, управляясь, ж безводушном пространстве, не имея никакой опоры вокруг себя. Для разрешения так поставленной задачи техника вынуждена искать принципиально иных путей.
     
     
      2. ВСЕМИРНОЕ ТЯГОТЕНИЕ И ЗЕМНАЯ ТЯЖЕСТЬ
     
      Прежде чем приступить к этим поискам, уделим внимание тем невидимым цепям, которые приковывают нас к земному шару — познакомимся ближе с действием силдо всемирного тяготения, С нею-то, главным образом, и предстоит иметь дело будущим плавателям по мировому океану. Начнем с одного распространенного заблуждения. Часто приходится слышать о некоторой «сфере» земного притяжения, выйдя за пределы которой, тела не подвержены уже притягивающему действию нашей планеты. От этого превратного представления надо отрешиться. Никакой «сферы» земного притяжения, никаких пределов для него не существует. Притяжение Земли, да и всякого тела, простирается беспредельно: оно лишь ослабевает с расстоянием, но никогда и нигде не прекращается вовсе. Когда мы мысленно переносимся с Земли на Луну и подпадаем под притягательное действие нашего спутника, мы не должны представлять себе дело так, будто где-то прекращается земное притяжение и начинается притяжение лунное; нет, на Луне появляются оба притяжения, но лунное превозмогает, — и явно заметно лишь действие преобладающей силы притяжения нашего спутника.
      Однако близ лунной поверхности сказывается также и земное притяжение. Да и у нас на Земле, на ряду с земным притяжением, проявляется тяготение Луны и Солнца; о нем дважды в сутки молчаливо, но убедительно свидетельствуют морские приливы.
      Взаимное притяжение присуще не только телам небесным; это одно из основных свойств всякой материи. Им обладают даже самые мелкие крупинки вещества, где бы они ни помещались и какой бы ни были природы. Ни на мгновение не перестает оно проявляться везде и всюду, на каждом шагу, в великом и в малом. «Падение яблока с дерева, провал моста, сцепление почвы, явление прилива, предварение равноденствий, орбиты планет со всеми их возмущениями, существование атмосферы, солнечное тепло, вся область астрономического тяготения, так же как форма наших домов и мебели, совокупность условий обыденной жизни и даже наше существование — всецело зависят от этого основного свойства вещества», — так картинно изображает английский физик проф. О. Лодж значение тяготения в природе. Каждые две частицы любого вещества притягивают друг друга, — и никогда, ни при каких условиях взаимное их притяжение не прекращается: ослабевай с расстоянием, оно нисколько не уменьшается с течением времени.
      Как же велика сила взаимного притяжения тел? Она может быть и невообразимо ничтожна и чудовищно могущественна — в зависимости от размеров притягивающихся масс и от их взаимного расстояния.
      Два яблока, по 100 г каждое, подвешенные одно от другого на расстоянии в 10 см (между центрами яблок), притягиваются с ничтожною силою в в сотни тысяч раз меньше веса песчинки. Ясно, что подобная сила едва способна преодолеть жесткость нитей, поддерживающих яблоки, и, конечно, не в состоянии сблизить яблоки сколько-нибудь заметным образом. Два взрослых человека, отстоящие на метр один от другого, взаимно притягиваются с силой около 40-й доли миллиграмма. Столь ничтожная сила не может обнару* житься в условиях обыденной жизни. Она недостаточна даже, чтобы разорвать паутинную нить; а ведь чтобы сдвинуть с места человека, нужно преодолеть трение его подошв о, (Пол; для груза в 65 кг трение достигает 20 кг, т. е. в 800 миллионов раз больше, чем упомянутая сила взаимного притяжения человеческих тел. Удивительно ли, что в условиях обиходной жизни мы не замечаем на Земле взаимного тяготения предметов?
      Но если бы трения не было, если бы два человеческих существа висели без опоры в пустом пространстве и ничто не мешало проявляться их взаимному притяжению, — то какие бы чувства ни питали эти люди друг к другу, они непреодолимо влеклись бы навстречу силою всемирного тяготения, хотя скорость этого сближения, под действием столь ничтожной силы, была бы крайне незначительна.
      Увеличьте притягивающиеся массы — и сила взаимного тяготения заметно возрастет. Провозглашенный Ньютоном закон всемирного тяготения утверждает: притяжение тел увеличивается пропорционально произведению их масс и уменьшается пропорционально квадрату взаимного расстояния. Можно вычислить, что два линейных корабля, по 25 000 тонн каждый, плавая на расстоянии километра друг от друга, взаимно притягиваются с силою 4 г (см. Приложение 1). Это в сто шестьдесят тысяч раз больше упомянутой силы притяжения двух человеческих существ, но, разумеется, слишком еще недостаточно, чтобы преодолеть сопротивление воды и сблизить суда вплотную. Да я при полном отсутствии сопротивления оба корабля, под действием столь ничтожной силы, втечение первого часа сблизились бы всего на два сантиметра.
      Даже притяжение целых горных хребтов требует для своего обнаружения тончайших измерений. Отвес, помещенный во Владикавказе, отклоняется от вертикали притяжением соседних Кавказских гор на угол всего лишь в 37 секунд.
      Зато для таких огромных масс, как Солнце и планеты, взаимное притяжение даже на отдаленнейших расстояниях достигает степеней, превосходящих наше воображение.
      Земля, несмотря на неимоверную отдаленность от Солнца, удерживается на своей орбите единственно лишь могучим взаимным притяжением обоих тел. Предположите на минуту, что это взаимное притяжение внезапно прекратилось и что инженеры задались целью заменить невидимые цепи тяготения материальными связями, — иначе говоря, желают привязать земной шар к Солнцу, скажем, стальными канатами. Вам знакомы, конечно, те свитые из проволоки тросы, которые применяются для подъемников. Каждый из них способен выдержать груз свыше 16 тонн. Знаете ли, сколько таких тросов понадобилось бы, чтобы помешать нашей планете удалиться от Солнца и, значит, как бы заменить силу взаимного притяжения Земли и Солнца? Цифра с пятнадцатью нулями мало скажет вашему воображению. Вы получите более наглядное представление о могуществе этого притяженит, если я сообщу вам, что всю обращенную к Солнцу поверхность земного шара пришлось бы густо покрыть непроходимым лесом таких тросов, по 70 на каждый квадратный метр.
      Так огромна невидимая сила, влекущая планеты к Солнцу.
      Впрочем, для межпланетных полетов не понадобится рассекать эту связь миров и сдвигать небесные светила с их вековечных путей. Будущему моряку вселенной придется считаться лишь с притягательным действием планет и Солнца на мелкие тела, и прежде всего, конечно, с силой тяжести близ земной поверхности: она-то и приковывает нас к нашей планете.
      Земная тяжесть интересует нас сейчас не тем, что она заставляет каждое лежащее или подвешенное земное тело давить на свою опору. Для нас важнее то, что всем телам, оставленным без опоры, тяжесть сообщает движение «вниз», к центру Земли. Вопреки обычному мнению, для всех тел — тяжелых и легких — быстрота этого движения в безвоздушном пространстве совершенно одинакова, и по истечении первой секунды падения всегда равна 10 м/сек. По истечении второй секунды к накопленной 10-метровой скорости присоединяются еще 10 м: скорость удваивается. Возрастание скорости длится всё время, пока совершается падение. С каждой секундой скорость падения возрастает на одну и ту же величину — на 10 м/сек. Поэтому к концу третьей секунды скорость равна 30 лг/сек, к концу четвертой — 40, и т. д. Если же тело брошено снизу вверх, то скорость взлета, наоборот, уменьшается каждую следующую секунду на те же 10 м/сек: по истечении первой секунды она на 10 м/сек меньше, чем начальная; по истечении второй — еще на 10 м меньше, т. е. в итоге на 20 м/сек и т. д., пока не истощится вся первоначально сообщенная телу скорость и оно не начнет падать вниз. (Так происходит лишь до тех пор, пока взлетающее тело не слишком удаляется от земной поверхности; на значительном расстоянии от Земли напряжение тяжести ослабевает, и тогда ежесекундно отнимается уже не 10 м/сек, а меньше.) Сухие цифры, — но они должны нам многое пояснить.
      В старину, говорят, к ноге каторжан приковывали цепь с тяжелой гирей, чтобы отяжелить их шаг и сделать не-способными к побегу. Все мы, жители Земли, незримо отягчены подобной же гирей, мешающей нам вырваться из земного плена в окружающий простор вселенной. При малейшем усилии подняться ввысь невидимая гиря дает себя чувствовать и влечет нас вниз с возрастающей стремительностью. Быстрота нарастания скорости падения — по 10 м в секунду за секунду — служит мерою отягчающего действия невидимой гири, которая держит нас в земном плену.
      Все мечтающие о полетах по беспредельному океану Вселенной должны сожалеть о том, что человеческому роду приходится жить как раз на той планете, которую мы именуем «Землей». Среди небесных сестер земного шара не все? обладают столь значительным напряжением тяжести, как наша планета. Вы убедитесь в этом, если взглянете на прилагаемую табличку, где напряжение тяжести на различных планетах дано по сравнению с напряжением земной тяжести.
     
      Будь условия тяжести у нас такие, как «а Меркурии или «а Луне, а тем более на Церере или Эросе, не пришлось бы, пожалуй, писать теперь этой книги, потому что люди давно путешествовали бы уже по мировому пространству. На мелких астероидах достаточно было бы просто оттолкнуться от планеты, чтобы навеки унестись в простор Вселенной
      Итак, межпланетные перелеты, помимо изыскания способов управления в пустоте, требуют разрешения вопроса о том, какими способами возможно бороться с силою земного притяжения.
      Мысль наша способна вообразить лйшь троякого рода борьбу с земною тяжестью:
      1) можно искать средств укрыться или заслониться от силы притяжения, сделаться для нее неуязвимым;
      2) можно пытаться ослабить напряжение земной тяжести; и, наконец —
      3) оставляя силу земной тяжести без изменения, изыскивать средства ее преодолеть.
      Каждый из трех путей, в случае успеха, сулит возможность освободиться от плена тяжести и пуститься в свободное плавание по Вселенной.
      В этой последовательности мы и рассмотрим далее наиболее любопытные, заманчивые или поучительные проекты осуществления космических перелетов, прежде чем перейдем к изложению современного состояния вопроса.
     
     
      3. МОЖНО ЛИ УКРЫТЬСЯ ОТ СИЛЫ ТЯЖЕСТИ?
     
      С детства привыкли мы к тому, что все вещи прикованы своим весом к Земле; нам трудно поэтому даже мысленно отрешиться от тяжести и представить себе картину того, что было бы, если бы мы умели эту силу уничтожать по своему желанию. Такую фантастическую картину нарисовал в одной из своих статей американский ученый
      Г. Сервис:
      «Если бы в самый разгар военной кампании мы могли посылать волны, которые нейтрализовали бы силу тяжести, то всюду, куда бы они ни попадали, немедленно наступал бы хаос. Гигантские пушки взлетали бы на воздух как мыльные пузыри. Марширующие солдаты, внезапно почувствовав себя легче перышка, беспомощно витали бы
      в воздухе, всецело во власти неприятеля, находящегося вне сферы действия этих волн. Картина забавная и, как может показаться, невероятная, — а между тем так было бы в действительности, если бы людям удалось подчинить своей власти силу тяжести».
      Всё это, конечно, фантазия. Не приходится и думать о том, чтобы распоряжаться силою тяготения по своему желанию. Мы не в состоянии даже сколько-нибудь отклонить эту силу от пути, по которому она действует, не можем ни одного тела защитить от ее действия. Тяготение — единственная сила природы, для которой не существует преград. Какое бы огромное, какое бы плотное тело ни стояло на ее пути, — сила эта проникает сквозь него как через пустое место. Тел, для тяготения непроницаемых» — сколько нам известно, — в природе нет
      Но если бы человеческому гению посчастливилось в бу-дущем отыскать или приготовить такое непроницаемое для тяготения вещество, смогли ли бы мы с его помощью укрыться от силы притяжения, сбросить цепи тяжести и свободно ринуться в мировое пространство?
      Английский писатель Герберт Уэллс подробно развил мысль о заслоне от тяготения в фантастическом романе «Первые люди на Луне»*.
      * Подлинник появился в 1901 г. Имеется Несколько русских переводов.
      Ученый герой романа» изобретатель Кевор, открыл способ изготовления именно такого вещества, непроницаемого для тяготения. Об этом фантастическом веществе, названном в романе «кевори-том», автор рассуждает так:
      «Почти каждое тело отличается непрозрачностью для какого-нибудь рода лучистой энергии и прозрачно для других ее видов. Отекло, например, пропускает видимый свет, но для невидимых лучей, производящих нагревание, оно гораздо менее прозрачно; квасцы, прозрачные для видимых лучей света, полностью задерживают лучи невидимые, нагревающие. Напротив, раствор иода в жидкости, называемой сероуглеродом, непрозрачен для видимых лучей света, но свободно пропускает невидимые, греющие лучи; через сосуд с такой жидкостью не видно пламени, но хорошо ощущается его теплота. Металлы непрозрачны не только для лучей света, видимого и невидимого, но и для электрических колебаний, которые однако свободно проходят сквозь стекло или через упомянутый раствор, как сквозь пустое пространство, и т. д.
      «Далее. Мы знаем, что для всемирного тяготения, т. е. для силы тяжести, проницаемы все тела. Вы можете поставить преграды, чтобы отрезать лучам света доступ к предметам; помощью металлических листов можете оградить предмет от доступа радиоволн, — но никакими преградами не можете вы защитить предмет от действия тяготения Солнца или от силы земной тяжести. Почему собственно в природе нет подобных преград для тяготения — трудно сказать. Однако Кевор не видел причин, почему бы и не существовать такому веществу, непроницаемому для тяготения; он считал себя способным искусственно создать такое непроницаемое для тяготения вещество.
      «Всякий, обладающий хоть искрой воображения, легко представит себе, какие необычайные возможности открывает перед нами подобное вещество. Если, например, нужно поднять груз, то, как бы огромен он ни был, достаточно будет разостлать под ним лист из этого вещества — и груз можно будет поднять хоть соломинкой».
      Располагая столь замечательным веществом, герои романа сооружают небесный дирижабль, в котором и совершают смелый перелет на Луну. Устройство снаряда весьма несложно: в нем нет никакого двигательного механизма, так как он перемещается действием внешних сил. Вот описание этого фантастического аппарата:
      «Вообразите себе шарообразный снаряд, достаточно просторный, чтобы вместить двух человек с их багажом. Снаряд будет иметь две оболочки — внутреннюю и наружную; внутренняя — из толстого стекла, наружная — стальная. Можно взять с собою запас сгущенного воздуха, концентрированной пищи, аппараты для дестилляции воды и т. п. Стальной шар будет снаружи весь покрыт слоем кеворита. Внутренняя стеклянная оболочка будет сплошная, кроме люка; стальная же будет состоять из отдельных частей, и каждая такая часть может сворачиваться как штора. Когда все шторы наглухо спущены, внутрь шара не может проникнуть ни свет, никакой вообще вид лучистой энергии, ни сила всемирного тяготения. Но вообразите, что одна из штор поднята; тогда любое массивное тело, которое слу-
      чайно находится вдали против этого окна, притянет нас к себе. Практически мы можем путешествовать в мировом посгран стве в том направлении, в каком пожелаем, притягиваемые то одним, то другим небесным телом».
      Интересно описан в романе момент отправления аппарата в путь. Слой «кеворита», покрывающий аппарат, делает его совершенно невесомым. Невесомое тело не может спокойно лежать на дне воздушного океана; с ним должно произойти то же, что происходит с пробкой, погруженной на дно озера: она всплывает на поверхность воды. Точно так же невесомый аппарат должен стремительно подняться ввысь и, миновав крайние границы атмосферы, умчаться по инерции в мировое пространство. Герои романа Уэллса так и полетели. А очутившись далеко за пределами атмосферы, они, открывая одни заслонки, закрывая другие, подвергая свой снаряд притяжению то Солнца, то Земли, то Луны, добрались наконец до поверхности нашего спутника. Впоследствии таким же путем аппарат благополучно возвратился на Землю.
      Описанный проест космических перелетов кажется на первый взгляд настолько правдоподобным, что естественно возникает мысль: не в этом ли направлении следует искать разрешения задачи звездоплавания? Нельзя ли, в самом деле, найти или изобрести вещество, непроницаемое для тяготения, и, пользуясь им, устроить межпланетный корабль?
      Достаточно однако глубже вдуматься в эту идею, чтобы убедиться в полной ее несостоятельности.
      Не говорю уже о том, как мало у нас надежды отыскать вещество, заслоняющее от тяготения. Ведь последние элементарные частицы, электроны и протоны, из которых построены все виды материи, обладают весомостью и проницаемы для тяготения. Немыслимо представить себе, чтобы какое-нибудь их сочетание могло обладать иными свойствами в этом отношении.
      Современное представление о сущности тяготения (учение А. Эйнштейна) рассматривает его вовсе не как силу природы, а как своеобразное воздействие материи на форму окружающего пространства: пространство в соседстве с материей приобретает кривизну. Уяснить себе это крайне необычное воззрение можно отчасти помощью следующей йгалогии. У вас имеется натянутая на обруче ткань; вы пускаете по ткани (мимо центра) легкий шарик — он покатится по прямой линии. Но вообразите, что вблизи пути легкого шарика положен на ткань крупный свинцовый шар. Он вдавит под собою ткань в виде чашки; легкий шарик, пущенный в прежнем направлении, не пронесется мимо этой чашки по прямой линии, а будет втянут вдавленностъю и закружится по ее склонам вокруг свинцового шара, как планета около Солнца. Планеты — такова сущность учения Эйнштейна — обращаются вокруг Солнца не потому, что отклоняются от прямолинейного пути притягательной силой центрального светила, а потому, что пространство, окружающее Солнце, искривлено.
      Читатель не должен забывать, что картина эта — всего лишь грубая аналогия, пытающаяся придать наглядность крайне отвлеченным представлениям. Как бы то ни было, современный взгляд на природу тяготения исключает возможность существования экрана, непроницаемого для действия этого фактора. Но пусть даже фантастический «кево-рит» найден, пусть сооружен аппарат по идее английского романиста. Пригоден ли будет такой аппарат для межпланетных путешествий, как описано в романе?! Посмотрим.
      В уме читателя, вероятно, уже мелькнуло сомнение, когда романист говорил нам о возможности поднять тяжелый груз «хоть соломинкой», поместив под ним непроницаемый для тяготения экран. Ведь это значит ни более, ни менее, как разрешить проблему вечного двигателя, создать энергию ни из чего! Вообразите, в самом деле, что мы обладаем заслоном от тяготения. Подкладываем лист «кево-рита» под любой груз, поднимаем, без всякой затраты энергии, наш теперь уже невесомый груз на любую высоту и снова убираем экран. Груз, конечно, падает вниз и может произвести при падении некоторую работу. Повторяем эту простую операцию дважды, трижды, тысячу, миллион раз, скблько пожелаем — и получаем произвольно большое количество энергии, ниоткуда ее не заимствуя.
      Выходит, что непроницаемый для тяготения экран даГет нам чудесную возможность творить энергию ни из чего, так как ее появление, повидимому, не сопровождается одновременным исчезновением равного количества энергии в другом месте или в иной форме. Если бы герой романа действительно побывал на Луне и возвратился на Землю тем способом, какой там описан, то в результате подобного путешествия мир обогатился бы энергией. Общее количество ее во Вселенной увеличилось бы на столько, сколько составляет разность работ, совершаемых силою тяготения при падении человеческого тела с Луны на Землю и с Земли на Луну. Земля притягивает сильнее, чем Луна, и следовательно первая работа больше второй. Пусть эта прибавка энергии ничтожна по сравнению с запасом ее во Вселенной, всё же такое сотворение энергии несомненно противоречит закону сохранения энергии.
      Если мы пришли к явному противоречию с законами природы, то, очевидно, в рассуждение вкралась незамеченная нами ошибка. Нетрудно понять, где именно надо ее искать. Идея заслона, непроницаемого для тяготения, сама по себе не заключает логической нелепости; но опта-* бочно думать, будто помощью его можно сделать тело невесомым без затраты энергии. Нельзя перенести тело за экран тяготения, не производя при этом никакой работы. Невозможно задвинуть шторы «кеворитного» шара, не применяя силы. Обе операций должны сопровождаться затратой количества энергии, равного тому, которое потом является словно созданным из ничего. В этом и состоит разрешение противоречия, к которому мы пришли.
      Задвигая заслонки межпланетного аппарата, герои Уэллса тем самым словно рассекали невидимую цепь притяже^ штя, которая приковывала их к Земле. Мы знаем в точности крепость этой цепи и можем вычислить величину работы, необходимой для ее разрыва. Это та работа, которую мы совершили бы, если бы перенесли весомое тело с земной поверхности в бесконечно удаленную точку пространства, где сила земного притяжения равна нулю.
      Есть люди, привыкшие относиться к слову «бесконечность» с мистическим благоговением, и упоминание этого слова нередко порождает в уме не-математика весьма превратные представления. Когда я сказал о работе, производимой телом на бесконечном пути, иные читатели, вероятно, уже решили про себя, что эта работа бесконечно велика. На самом деле она, хотя и очень велика, но имеет конечную величину, которую математик может в точности вычислить. Работу перенесения весомого тела с земной поверхности в бесконечность мы можем рассматривать как сумму бесконечного ряда слагаемых, которые быстро уменьшаются, потому что с удалением от Земли сила притяжения заметно ослабевает. Сумма подобных слагаемых, хотя бы их было бесчисленное множество, нередко дает результат конечный. Сделайте шаг, потом еще полшага, затем еще 1/4 шага, еще 1/8, 1/16 и т. д. Вы можете подвигаться так целую вечность — и всё же не сделаете больше двух полных шагов. При учете работы тяготения мы имеем нечто вроде подобного суммирования, и читатель не должен удивляться, что работа эта даже на бесконечном пути имеет значение конечное. Можно вычислить, что для груза в 1 кг работа его перенесения с земной поверхности в бесконечность составляет немного более 6 миллионов килограммометров. Так как эта техническая оценка работы не для всех понятна, то поясню, что она равна величине работы, которую произвел бы например подъемный кран, подняв паровоз с тендером (75 г) на высоту 80 м. Современные океанские пароходы-исполины, с турбинами мощностью в 100 000 лошадиных сил, совершают ту же работу менее чем в одну секунду.
      Далее. В смысле затраты работы совершенно безразлично, перенесете ли вы груз с Земли в бесконечно удаленную точку, или же в весьма близкое место, но такое, где он вовсе не притягивается Землей. В обоих случаях вы совершили бы одинаковую работу: величина ее зависит* не от длины пройденного пути, а только от разности силы притяжения в крайних точках пути. При переносе тела в бесконечность работа производится на протяжении бесконечно длинного пути; при переносе за экран тяготения та же самая работа затрачивается в те несколько мгновений, пока совершается перенос. Надо ли говорить, что вторую работу практически было бы еще труднее произвести, чем первую?
      Теперь становится очевидной безнадежность фантастического проекта Уэллса. Романист не подозревал, что перенесение тела за экран, непроницаемый для тяготения, представляет неимоверно трудную механическую задачу
      * На этот давно обнаруженный мною недосмотр в рассуждениях Уэллса я имел возможность обратить внимание писателя лишь в 1934 г., при его посещении СССР.
      Задвинуть заслонки «кеворитного» снаряда не так просто, как захлопнуть дверцу автомобиля: в промежуток времени, пока закрываются заслоны и пассажиры уединяются от весомого мира, должна быть выполнена работа, равная работе перенесения пассажиров в бесконечность. А так как два человека весят свыше 100 кг, то, значит, задвигая заслонки снаряда, герои романа должны были в одну секунду совершить работу, немало-немного, в 600 миллионов килограммометров. Это столь же легко выполнить, как втащить сорок паровозов на вершину Эйфелевой башни втечение одной секунды. Обладая такой мощностью, мы и без «ке-ворита» могли бы буквально прыгнуть с Земли на Луну
      Итак, идея странствовать во Вселенной под защитою вещества, непроницаемого для тяготения, приводит к тому, что в логике называется «порочным кругом». Чтобы воспользоваться таким веществом, надо преодолеть притяжение Земли, т. е. выполнять именно то, ради чего и должен бьггь придуман заслон тяготения. Следовательно, заслон для тяготения не разрешил бы проблемы небесных путешествий.
     
     
      4. МОЖНО ЛИ ОСЛАБИТЬ ЗЕМНУЮ ТЯЖЕСТЬ?
     
      Если несбыточны надежды укрыться от силы тяжести, то, бьггь может, существуют способы хотя бы ослабить тяжесть на земной поверхности?
      Казалось бы, закон тяготения не допускает подобной возможности даже в теории: сила притяжения зависит ведь от массы земного шара, уменьшить которую мы не в состоянии. Однако это не так. Речь идет о напряжении тяжести на поверхности нашей планеты, а именно, как
      известна, зависит не от одной лишь массы, но и от расстояния до центра земного шара, т. е. от величины земного радиуса. Если бы мы могли разрыхлить земной шар настолько, чтобы, увеличившись в объеме, он приобрел радиус, например, вдвое больше, чем теперь, то напряжение тяжести на поверхности такого шара стало бы вчетверо меньше. В самом деле: находясь на поверхности Земли, мы были бы вдвое дальше от притягивающего центра (шарообразные тела притягиваются так, словно вся их масса сосредоточена в центре). Выгода от подобного переустройства обитаемой нами планеты получилась бы еще и та, что поверхность земного шара увеличилась бы в четыре раза. Людям жилось бы на Земле буквально вчетверо «свободнее» и вчетверо «легче»
      Разумеется, современная и даже будущая техника не в состоянии осуществить ничего подобного.
      Механика указывает и другой путь к ослаблению земной тяжести. Он состоит в том, чтобы ускорить быстроту вращения Земли вокруг оси. Уже и теперь центробежный эффект вращения земного шара уменьшает вес каждого тела на экваторе на 1/290 долю. В соединении с другой причиной (вздутием земного шара у экватора) вращение Земли действует так, что все тела на экваторе весят на 1/2% меньше, чем близ полюсов. Паровоз, весящий в Москве 60 г, становится по прибытии в Архангельск на 60 кг тяжелее, а в Одессу — на столько же легче. Партия угля в 5000 г, доставленная со Шпицбергена в экваториальный порт, уменьшилась бы в весе на 20 г, если бы приемщику пришла фантазия принять груз, пользуясь пружинными весами, выверенными на Шпицбергене. Линкор, весящий в Архангельске 20 000 г, становится по прибытии в экваториальные воды легче на 80 г; но это, конечно, неощутительно, так как соответственно легче делаются и все другие тела, не исключая и воды в океане. Разницу веса похищает главным образом центробежный эффект: на экваторе он несколько больше, чем в удаленных от него широтах, где точки земной поверхности при вращении Земли описывают гораздо меньшие круги.
      Нетрудно доказать, что если бы Земля вращалась в 17 раз быстрее, чем теперь, то центробежный эффект на экваторе увеличился бы в 17 X 17, т. е. почти в 290 раз. Вспомнив, что теперь центробежный эффект похищает у тел как раз 1/290 долю их веса, вы поймете, что на экваторе столь быстро вращающейся Земли тела совсем не имели бы веса. Стоило бы тогда лишь достичь экватора, чтобы слегка оттолкнувшись там, ринуться в мировое пространство. Задача звездоплавания разрешалась бы крайне просто. А если бы Земля вращалась еще быстрее, мы сделались бы небесными странниками поневоле, так как инерция при вращении сама отбросила бы нас в бездонную глубь неба. Людям приходилось бы задумываться уже над проблемой «земных», а не межпланетных странствований
      Но мы чересчур далеко забрели в область фантазии. Всё сказанное лежит, конечно, за гранью достижимого. Если бы в наших силах и была возможность ускорить вращение земного шара, то, вертясь достаточно быстро, Земля расплющилась бы (в плоскости своего экватора), а бьгть-мо-жет даже еще ранее разлетелась бы на части, как чересчур быстро заверченный жернов. Возможность путешествовать в межзвездных пространствах приобретена была бы слишком дорогой ценой
     
     
      5. ВОПРЕКИ ТЯЖЕСТИ — HA ВОЛНАХ СВЕТА
     
      Из трех мыслимых способов борьбы с тяготением мы рассмотрели и отвергли два: способ защиты от тяготения и способ ослабления земной тяжести. Ни тот, ни другой не дают надежды успешно разрешить заманчивую проблему межпланетных перелетов. Бесплодны всякие попытки укрыться от силы тяготения; безнадежно стремление ослабить напряжение тяжести. Остается одно: вступить с Тяготением в борьбу, искать средство преодолеть его и покинуть нашу планету вопреки притяжению.
      Проектов подобного рода существует несколько. Они, без сомнения, интереснее всех других, так как их авторы не измышляют фантастических веществ вроде «экрана тяготения», не предлагают переделать земной шар или изменить скорость его вращения.
      Один из проектов рассматриваемой категории предлагает воспользоваться для межпланетных перелетов давлением световых лучей.
      Лицам, мало знакомым с физикой, должно казаться невероятным, что нежные лучи света оказывают давление на озаряемые ими предметы. Между тем одной из величайших заслуг нашего гениального физика П. Н. Лебедева было то, что он на опыте обнаружил и измерил отталкивающую силу лучей света.
      Всякое светящееся тело, будь то свеча на вашем столе, электрическая лампа, раскаленное Солнце или даже темное тело, испускающее невидимые лучи, давит своими лучами на озаряемые тела. П. Н. Лебедеву удалось измерить силу давления, оказываемого солнечными лучами на освещаемые ими земные предметы: в мерах веса она составляет около % мг для площади в квадратный метр. Если умножить полмиллиграмма на площадь большого круга земного шара, мы получим для давления солнечных лучей на Землю весьма внушительный итог: около 60 000 т.
      Такова величина силы, с которой Солнце давлением своих лучей постоянно отталкивает нашу планету. Сама по себе взятая, сила эта велика. Но если сравнить ее с величиною солнечного притяжения, то окажется, что отталкивание в 60 000 т не может иметь заметного влияния на движение земного шара: сила эта в 60 биллионов раз слабее солнечного притяжения. Далекий Сириус, от которого свет странствует к нам 8 лет, притягивает Землю с гораздо большей силою — 10 миллионов тонн, а планета наша словно не чувствует этого. Не забудем, что 60 000 г — это вес только одного большого океанского парохода. (Вычислено, что под давлением солнечных лучей земной шар должен удаляться от Солнца на 2,5 мм в год.)
      Однако, чем тело меньше, тем большую долю силы притяжения составляет световое давление. Вы поймете, почему это, если вспомните, что притяжение пропорционально массе тела, световое же давление пропорционально его поверхности. Уменьшите мысленно земной шар так, чтобы поперечник его стал вдвое меньше. Объем, а с ним и маоса Земля уменьшается в 2 X 2 X 2 = 8 раз, поверхность же уменьшится лишь в 2 X 2== 4 раза; значит, притяжение ослабнет в 8 раз, пропорционально уменьшению массы; световое же давление уменьшится соответственно поверхности, т. е. всего лишь в 4 раза. Вы видите, что притяжение ослабело заметнее, чем световое давление. Уменьшите Землю еще вдвое — получится снова выгода в пользу светового давления.
      Если будете продолжать и далее это неравное состязание кубов с квадратами, то неизбежно дойдете до таклх мелких частиц, для. которых световое давление, наконец, сравняется с притяжением. Подобная частица не будет уже приближаться к Солнцу — притяжение уничтожится равным отталкиванием. Вычислено, что для шарика плотности воды это должно иметь место в том случае, если поперечник его немного менее тысячной доли миллиметра.
      Ясно, что если подобный шарик будет еще меньше, то световое отталкивание превзойдет силу притяжения, и крупинка будет уже стремиться не к Солнцу, а от Солнца. Чем крупинка меньше, тем сильнее должна она отталкиваться от Солнца. Перевес светового давления над тяготением, конечно, выражается ничтожной величиной, но ведь и ничтожность — относительна. Масса пылинки, которую эта сила движет, также чрезвычайно мала; и мы не должны удивляться тому, что маленькая сила сообщает весьма маленькой массе огромную скорость — в десятки, сотни и тысячи километров в секунду
      Как читатель узнает позже, достаточно сообщить телу секундную скорость около 11 км, чтобы отослать §го с земной поверхности в мировое пространство, а при начальной скорости в 17 км в сек. тело сможет свободно странствовать по планетной системе. Значит, если ничтожная земная пылинка очутится почему-либо за пределами атмосферы, она будет подхвачена там световым давлением и увлечется им в мировое пространство, навсегда покинув породившую ее Землю. Она будет мчаться с возрастающей скоростью всё далее и далее к окраинам нашей планетной системы, пересекая орбиты Марса, астероидов, Юпитера и через каких-нибудь полторы декады будет уже у крайней границы нашей солнечной системы.
      Два американских ученых, Никольс и Гулл, изучавшие световое давление одновременно с П. Н. Лебедевым, произвели следующий чрезвычайно поучительный опыт. В абсолютно пустую стеклянную трубку, имеющую перехват как в песочных часах (рис. 11), они насыпали смесь прокаленных грибных спор и наждачного порошка. Прокаленные и следовательно превращенные в уголь споры необычайно малы и легки; они имеют не более 0,002 мм в поперечнике и в десять раз легче воды. Поэтому, если направить на них сильный свет, сосредоточенный помощью зажигательного стекла, то можно ожидать, что пылинки будут отталкиваться световыми лучами. Так и происходило в опыте: когда смесь пересыпалась сквозь шейку перехвата, то направленный сюда свет (вольтовой дуги) отталкивал угольные пылинки, между тем как более тяжелые частицы наждачного порошка падали отвесно.
      Загадочная особенность кометных хвостов, словно отталкиваемых Солнцем, по всей вероятности, объясняется именно лучевым давлением. Об этом догадывался гениальный Кеплер, законодатель планетной системы, писавший три века назад следующие строки в своем трактате о кометах: «По натуре всех вещей полагаю, что когда материя в пространстве Вселенноц извержена бывает и сия пропускающая свет голова кометы прямыми лучами Солнца ударяется и пронизывается, то из внутренней материи кометы нечто им следует и тою же дорогою исходит, которой солнечные лучи пробивают и тело кометы освещают Указание на причину, что из материи кометного тела нечто непрерывно изгоняется солнечными лучами силою оных, подал мне хвост кометы, о коем известно, что он всегда удаляется в сторону, противоположную Солнцу, и лучами Солнца формируется. .. Итак, нимало не сомневайся, читатель, что хвосты комет образуются Солнцем из материи, из головы изгнанной».
      Не может ли и человек воспользоваться тою же силою для межпланетных путешествий? Для этого не надо было бы непременно уменьшаться до микроскопических размеров; достаточно устроить аппарат с таким же выгодным отношением поверхности и массы, как у мельчайших пылинок, отталкиваемых лучами Солнца. Другими словами: поверхность аппарата должна быть во столько же раз больше поверхности пылинкй, во сколько раз вес снаряда больше веса этой пылинки.
      Автор одного астрономического романа перенес своих героев на другие планеты именно в подобном аппарате. Его
      герои соорудили каюту из легчайшего материала, снабженную огромным, но легким зеркалом, которое можно было поворачивать на подобие паруса. Помещая зеркало под различными углами к солнечным лучам, пассажиры небесного корабля, смотря по желанию, либо ослабляли отталкивающее действие света, либо же сводили его на нет, всецело отдаваясь притягательной силе. Они плавали взад и вперед по океану Вселенной, посещая одну планету за другой.
      В романе всё выходит правдоподобно и заманчиво. Но точный расчет разрушает эту мечту, не оставляя надежды на осуществление подобного проекта. Ведь зеркало площадью в один квадратный метр должно обладать массою не менее килограмма; мы хотим, чтобы под действием светового давления оно приобрело скорость, дающую ему возможность свободно странствовать в солнечной системе, т. е. — как узнаем далее — 17 км/сек. Легко рассчитать, что такая скорость может накопиться под действием светового давления только в 130 лет!
      Правда, изготовив зеркало из легчайшего металла — лития, при толщине 0,1 мм, мы имели бы на кв. метр его массу только в 50 г. Срок накопления космической скорости для такого зеркала (но не для увлекаемого им аппарата!) сокращается в 20 раз. Практически это, однако, не меняет дела: ясно, что при подобных темпах изменения скорости маневрирование космическим кораблем невозможно. К тому же, не надо упускать из виду, что световое давление должно двигать, кроме зеркала, также и весь соединенный с ним аппарат, пассажиров и груз.
      Использовать световое давление можно было бы, пожалуй, лишь для перемещения так называемой внеземной станции, о которой речь будет у нас впереди (см. далее главу «Искусственная луна»).
      Столь же безнадежно обстоит вопрос с проектом применить для этой цели радиоволны, посылаемые с Земли в мировое пространство. Во-первых, за внешние пределы земной атмосферы может пробиться в лучшем случае только незначительная часть посылаемых электромагнитных лучей (см. об этом статью «Межпланетная сигнализация» в Приложениях к книге). Если для движения звездолета оказывается недостаточной механическая энергия солнечного излучения, то что сказать об излучении земных радиостанций? Что же касается управления межпланетным кораблем по радио, то и об этом тоже говорить не приходится, потому что такое управление возможно было бы лишь в случае, если бы корабль имел в себе механизм для движения в безвоздушном пространстве, — а в этом ведь и вся задача.

      КОНЕЦ ФРАГМЕНТА КНИГИ

 

 

От нас: 500 радиоспектаклей (и учебники)
на SD‑карте 64(128)GB —
 ГДЕ?..

Baшa помощь проекту:
занести копеечку —
 КУДА?..

 

На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека


Борис Карлов 2001—3001 гг.