На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека

Перельман Я. «Ракетой на Луну». Иллюстрации - Ю. Д. Складин. - 1935 г.

Яков Исидорович Перельман. Фото 1907 и 1934 гг.

Яков Исидорович Перельман
«Ракетой на Луну»
Иллюстрации - Ю. Д. Складин. - 1935 г.


DjVu


От нас: 500 радиоспектаклей (и учебники)
на SD‑карте 64(128)GB —
 ГДЕ?..

Baшa помощь проекту:
занести копеечку —
 КУДА?..



СОДЕРЖАНИЕ

Далеко ли до луны 6
Какой величины луна 11
Как луна устроена 16
Завоевать небо 19
Из пушки на луну 26
Как и почему летит ракета 32
Для чего служат ракеты 39
Летательная машина революционера Кибальчича 41
Ракетный корабль Циолковского 47
Изобретатели за рубежом 52
От мысли к делу 53
Первые шаги 56
Заглянем в будущее 61
Лунный перелёт —
Прогулка по луне 72
Возвращение 76

 

      ДАЛЕКО ЛИ ДО ЛУНЫ
     
      В детстве мне казалось, что если забраться на крышу дома, то до луны будет уже не так далеко. Однажды в лунный вечер я залез на чердак, подошёл к слуховому окну и выглянул оттуда. Я думал, что увижу луну вблизи. Куда там! Она висела в небе по-прежнему высоко, словно я смотрел на неё прямо с земли.
      — Ты собирался, кажется, луну рукой достать? — смеясь, сказал старший брат.
      — Мне бы на пожарную каланчу забраться, — ответил я. — Другое бы дело было!
      — Не помогла бы и каланча, — сказал брат. — Знал бы ты, как до луны далеко, не трудился бы никуда забираться.
      — А знают разве люди, как далеко до луны?
      — Конечно. Расстояние давно измерено.
      — Значит, люди добирались до луны?
      — Ну, нет. Там не бывал ещё ни один человек.
      — На луне не были, а расстояние измерили!.. Как же так?
      — Измерить расстояние до луны можно и не забираясь на неё, а оставаясь на земле. Хочешь, я объясню тебе завтра, как делаются такие измерения?
      Наутро брат вышел со мной из дома, прошёл несколько улиц нашего маленького города и привёл меня к месту, где высоко на берёзе виднелась скворечница.
      — Мог бы ты измерить, — спросил он, — на высоте скольких метров висит эта скворечница?
      — Если влезть на берёзу, — начал я, — добраться до скворечницы, спустить оттуда верёвку
      — Ну, а не влезая на дерево, — перебил меня брат, — стоя здесь, на земле, притом без всякой верёвки?
      Я задумался. Определить высоту скворечницы, не взбираясь на дерево, казалось мне совершенно невозможным. Однако брат взялся это проделать. Вынув из кармана две белые карточки, он дал одну мне и велел отойти в сторону от берёзы. Сам же, держа в руке вторую карточку, отошёл по другую сторону дерева. Приставив карточку к глазу, брат стал на колено, чтобы быть одного роста со мною. Нижний край его карточки был направлен как раз на меня. Закрыв один глаз, он глядел другим на скворечницу так, чтобы взгляд скользил по карточке; в этом направлении он прочертил на карточке прямую линию. Стоя на своём месте, я должен был проделать то же самое.
      Вы лучше поймёте то, что сейчас было сказано, если рассмотрите внимательно нижний правый угол рисунка на стр. 7.
      Покончив с этим, брат вынул из кармана мерную ленту и промерил расстояние между местами, где мы стояли. Оказалось одиннадцать метров.
      — Готово! — объявил брат. — Можно отправляться домой.
      — А как же высота? — разочарованно спросил я. — Ведь ты собирался измерить высоту скворечницы.
      — Для того и идём домой. Там узнаем. Здесь нам больше нечего делать.
      Это было совсем странно: как можно в своей комнате измерить высоту скворечницы, которая висит где-то за городом?
      С интересом ждал я, что он станет делать дома.
      Брат начал с того, что провёл на листе бумаги прямую линию в одиннадцать сантиметров длины. К концам линии он приставил наши карточки, как показано на рисунке (см. ниже). Линии, прочерченные на них, он продолжил на бумаге, пока они не встретились, и измерил расстояние от места встречи до нижней линии.
      Я не очень-то понимал, зачем всё это делается и как отсюда можно будет узнать высоту фонаря.
      — Вот видишь, — объяснил мне брат, водя пальцем по чертежу, — нижняя линия в одиннадцать сантиметров — это расстояние от моего глаза до твоего, когда мы стояли с тобою у берёзы. Оно лишь уменьшено: сколько там было метров, столько на чертеже сантиметров. А вот это — направления, под какими мы глядели на скворечницу. Она висит в месте встречи этих линий. Расстояние от неё до нижней линии и есть высота скворечницы, только высота не над самой землёй, а над линией наших глаз. Сколько здесь, в этом расстоянии, сантиметров, на столько метров возвышалась скворечница над линией наших глаз. Ведь сантиметр на чертеже соответствует метру на улице. Если к найденной высоте прибавим твой рост, мы узнаем то, что хотели: высоту скворечницы над землёй. Понял?
      — Это довольно просто.
      — А понимаешь ты теперь, каким образом могли учёные измерить расстояние до луны, не добираясь до неё?
      — Конечно: два учёных глядели на луну сразу из двух далёких мест и замечали направления, как мы.
      — Да, только сделано это было не так легко и просто, как у нас с тобою. Расстояние между обоими учёными было не одиннадцать метров, а несколько тысяч километров; углы же не прочерчивались на картоне, а измерялись точнейшими инструментами. Зато и вывод получился гораздо надёжнее.
      — И что же узнали? Как далеко до луны?
      — Страшно далеко! Круглым числом четыреста тысяч километров. Ты знаешь, что от Москвы до Ленинграда всего лишь шестьсот сорок километров. До луны же от нас четыреста тысяч километров. Это в шестьсот с лишним раз дальше, чем от Москвы до Ленинграда. Если бы два города на земле были разделены таким большим расстоянием, то знаешь, сколько времени мчался бы поезд от одного к другому?
      — Целую неделю? — попробовал я угадать.
      — Сообрази: от Москвы до Ленинграда скорый поезд идёт примерно десять часов. Если расстояние в шестьсот раз больше, то и времени уйдёт на езду в шестьсот раз больше. Значит, понадобится шесть тысяч часов. Это — двести пятьдесят суток, или восемь месяцев с лишним. Вот как далеко до луны! Ну, что ты скажешь теперь: стоит взбираться на пожарную каланчу, чтобы взглянуть на луну поближе?
      Я рассмеялся.
      Брат продолжал:
      — На свете нет такой высокой башни, с верхушки которой луна казалась бы хоть чуточку ближе, чем с поверхности земли.
      — А железная башня Эйфеля в. Париже? — спросил я. — Ведь она выше облаков!
      — Да, случается иной раз, что верхушка её окутывается облаками. Но ты, вероятно, думаешь, что облака плывут очень высоко? Это неверно: высота их и сравниться не может с высотою луны. Те облака, что окутывают иногда верхушку Эйфелевой башни, находятся не выше трёхсот метров. Дождь идёт из облаков, плавающих на высоте двух километров, а самые высокие облака, перистые, висят над нами в восьми — десяти километрах. Что всё это по сравнению с четырьмястами тысяч километров! Башня Эйфеля имеет в высоту триста метров. Конечно, если бы ты забрался на её верхушку, тебе показалось бы, что ты страшно высоко над землёй. Люди внизу казались бы муравьями. Но будь башня даже втрое выше, она и тогда была бы в четыреста тысяч раз ниже, чем луна над нашей головой. Заметь, не просто в четыреста раз, а в четыреста тысяч раз! Когда вещь делается ближе всего лишь на четырёхсоттысячную долю, можно разве это уловить глазами?
      — Но если луна та» далека, — спросил я, — то, верно, она. и не такая маленькая, как кажется?
      — Какой же она величины, по-твоему?
      — Величиной с тарелку, мне казалось.
      — С тарелку? Ну, хорошо, сегодня вечером мы измерим с тобою, как велика лунная тарелка.
     
     
      КАКОЙ ВЕЛИЧИНЫ ЛУНА
     
      Поздно вечером брат вывел меня за город на ровное, далеко простирающееся поле. Тёмное небо было безоблачно и начинало заметно светлеть на востоке.
      — Скоро взойдёт полная луна, — сказал брат, указывая на восток, где вырисовывалась на небе чёрная заводская труба.
      — Там, позади завода?
      — Да. Й тогда ты поймёшь, как могли люди измерить лунный поперечник. Видишь линию, где свод неба как бы сходится с землёй? Линия эта называется горизонтом. Ты, конечно, понимаешь, что горизонт — не край земли, а только граница того, что видит глаз. В старину люди думали, что земля плоская, как круглый поднос. Верили, что можно добраться до края этого подноса — туда, где свод неба опирается на землю, и высунуть голову за небесный купол. Теперь даже дети знают уже, что земля никаких границ не имеет, что она круглая не как поднос, а как мяч. Свод неба не существует; нам только кажется, что земля накрыта небесным куполом.
      — А если дойти до горизонта?
      — До него дойти никак нельзя. Сколько бы ты ни шёл, горизонт всё время будет отступать от тебя. Горизонт — это то место, где взгляд
      наш соскальзывает с выпуклости земного шара и уходит в небесное пространство. На ровном месте взрослый человек видит кругом себя на пять километров; это и есть расстояние до горизонта. Если подняться выше, горизонт отойдёт дальше. Для человека маленького роста горизонт ближе.
      В старину люди верили, что возможно добраться до края земли и даже высунуть голову за небесный свод. (Этот рисунок взят из старинной книги.)
      — А для меня?
      — Я рассчитал, что при твоём росте ты должен видеть горизонт на расстоянии четырёх километров. Завод виден тебе как раз на горизонте — значит от нас до него четыре километра. Если я пригнусь до одной высоты с тобой, то буду видеть завод, как и ты, на самом горизонте А, вот и край луны показался!
      — Я не вижу.
      — Оттого, что ты ниже ростом. Для меня горизонт лежит на километр дальше, и мне видно то, чего ты ещё не видишь.
      Через некоторое время и я увидел верхушку светлого лунного круга, выдвинувшегося из-под горизонта.
      Как можно измерить величину луны, пользуясь заводской трубой.
      Вскоре луна выплыла вся на небо и стала большим медно-жёлтым кругом за чёрной заводской трубой. На светлом лице луны труба виднелась очень чётко и помещалась как раз между краями лунного круга.
      — Заводская труба и лунный поперечник кажутся отсюда одной величины, — сказал я.
      — Вот именно! Для того-то я и привёл тебя сюда, чтобы ты это увидел. А как ты думаешь: на самом деле луна и труба тоже одной величины?
      — Луна дальше — значит, она больше.
      — Во сколько раз?
      — Во столько раз больше, во сколько дальше.
      — Но ты ведь знаешь уже оба расстояния: и до трубы, и до луны. Сообрази же, во сколько раз лунный поперечник больше высоты трубы.
      Какой величины круг луны по сравнению с материком Африки. (Надо помнить, однако, что полная
      поверхность лунного шара больше этого круга в четыре раза; она заключает больше квадратных километров, чем африканский материк, и немногим уступает по размерам материку Азии.)
      Я начал высчитывать вслух:
      — До трубы четыре километра, до луны четыреста тысяч километров. Луна дальше в сто тысяч раз. Значит, поперечник её длиннее трубы тоже в сто тысяч раз.
      — Верно! Теперь скажу тебе высоту трубы.
      — Откуда ты знаешь?
      — Сегодня днём я нарочно побывал на заводе и определил там её высоту. Воткнул в землю отвесно палку и измерил её тень. Во сколько раз тень палки короче тени трубы, во столько же раз и сама палка ниже самой трубы.
      — Какой же высоты труба?
      — Тридцать пять метров. И тогда же я рассчитал, что для тебя она на горизонте должна покрывать поперечник луны.
      — Теперь я уж сам могу высчитать, как велик лунный поперечник, — подхватил я. — Надо тридцать пять метров умножить на сто тысяч. Сначала умножаю на одну тысячу — получаю тридцать пять тысяч метров, или тридцать пять километров. Эти тридцать пять километров множу на сто — получаю тридцать пять сотен, или три с половиной тысячи километров.
      — Правильно. Вот мы и узнали длину лунного поперечника: три с половиною тысячи километров. Хороша тарелочка!
      Я был так поражён этим результатом, что не поверил бы ему, если бы сам не проделал расчёта. Так вот какой величины лунный шар! Его поперечник всего в четыре раза меньше земного.
      — Ты убедился теперь, — сказал брат, — что луна не тарелка, а целый мир. Круг лунного шара шириной с Африку, но полная поверхность луны больше поверхности этого материка. Учёные рассчитали, что полная поверхность лунного шара по обширности лишь немного уступает Азии: в той и другой почти одинаковое число квадратных километров. А Азия, ты знаешь, огромный материк. На нём живёт больше половины всего человечества, по нему протекают многоводные реки, проходят хребты высочайших гор, простираются обширные плодородные равнины и тянутся столь же обширные пустыни
      — А на луне? — спросил я.
     
     
      КАК ЛУНА УСТРОЕНА
     
      — Ты спрашиваешь, как устроена поверхность луны? — сказал брат, когда мы направились домой. — Учёные знают об этом только то, что можно разглядеть с земли в зрительные трубы. Трубы словно приближают луну к нашим глазам, но приближают недостаточно. Самые сильные трубы показывают нам луну такою, какою видна она простому глазу с расстояния нескольких сотен километров. Много ли с такого удаления различишь?
      — Что же там всё-таки увидели учёные?
      — При взгляде на луну в трубу, даже и не очень сильную, сразу заметно, что луна — страна горная. Поверхность лунного шара почти вся изрезана горами — целыми хребтами и множеством отдельных гор,
      Что можно различить на луне в трубу.
      больших и малых. Они отбрасывают при солнечном освещении заметные тени, и по этим теням учёные измерили высоту лунных гор. Среди них оказались и очень высокие — до семи и более километров. На земле самая высокая гора — Эверест, в Азии, — достигает почти девяти километров. Но ведь луна меньше земли; семикилометровая гора на шаре луны — более крупная неровность, чем девятикилометровая гора на шаре земли. Большинство лунных гор имеет форму кольца, которое окружает внутреннюю впадину. На земле нет таких больших кольцевых гор, как на луне. Некоторые из лунных кольцевых гор имеют в поперечнике сто, полтораста и более километров; есть гора, охватывающая площадь примерно. такую же, как Ладожское озеро. Иногда посредине впадины лунной горы поднимается другая гора; но она бывает не выше окружающего её вала.
      — Можно эти горы видеть без трубы?
      — Нет, простым глазом не видно.
      — А что такое те серые пятна, которые я вижу сейчас на луне?
      — Обширные тёмные пространства. Старинные учёные назвали их «морями». Такое название осталось за ними и теперь, хотя давно известно, что это сухие равнины. На луне нет ни морей, ни океанов, ни рек, нет никакой воды на поверхности. Нет даже ни одного облачка. Никогда не бывает там ни дождя, ни снега.
      — Отчего же нет на луне воды?
      — Оттого, что луна не окружена атмосферой. Где нет воздуха, там вода сразу же должна испариться. Но и пар не мог бы остаться на луне; он должен рассеяться в небесном пространстве, как рассеялся тот воздух, который когда-то, вероятно, был на луне.
      — Почему же земной воздух не рассеивается, а лунный рассеивается?
      — Потому что на луне тяжесть заметно слабее, чем на земле. Бели бы перенести на луну гирю в один килограмм и повесить на крючок пружинного безмена, она вытянула бы там не тысячу граммов, а только сто семьдесят. Все вещи на луне в шесть раз легче, чем на земле. Луна слабее притягивает к себе, чем земля. Оттого и не могла луна удержать вокруг себя атмосферу.
      — Ещё что узнали о луне? Расскажи!
      Участок лунной поверхности, видимый в сильный телескоп. Различаются горные цепи, отдельные сольцевые горы и обширные равнины, называемые морями».
      — Луна вращается вокруг себя гораздо медленнее, чем земля. Лунные сутки длятся двадцать девять земных суток: четырнадцать с половиной суток длится день и столько же ночь.
      — Такая долгая ночь?
      — Да. И за эту долгую ночь почва луны успевает настолько остыть, что там стоят страшные морозы, каких на земле никогда не бывает. А за долгий день лунная почва, наоборот, накаляется горячее кипятка. Солнце палит без перерыва четырнадцать наших суток, а ведь на лунном небе нет ни единого облачка, и жар солнца ничем не смягчается.
      — Кроме гор и равнин что ещё заметили на луне?
      — Заметили глубокие трещины в почве, шириною примерно в километр, которые тянутся иногда на сотни километров. Их назвали «бороздами». А от некоторых гор расходятся во все стороны какие-то полосы, которые не отбрасывают тени и ярко выделяются на лунной почве. Они названы «лучами». Что это такое — никто не знает. Может быть, застывшие потоки лавы, а может быть, что-нибудь другое.
      За разговором мы не заметили, как добрались до дому. Там брат показал мне в книге рисунки луны и её частей, как они видны в сильную трубу.
      — Хотелось бы самому побродить по этим горам! — мечтал я, рассматривая рисунки. — Неужели так и невозможно добраться до луны?
      — Пока ещё нельзя, — ответил мне брат. — Но в будущем придумают способ совершить такое путешествие. Было время, когда люди не могли и до Америки добраться, считали это неисполнимым делом. А теперь большой пароход перевозит туда сразу тысячу людей в 4-5 суток. Наступит время, когда и перелёт на луну сделается возможным. Тогда люди облетят кругом луны и смогут узнать, как устроена другая её половина — та, которая никогда к нам не поворачивается.
      — Разве нам видна только половина луны?
      — Да, всегда одна и та же половина. Луна обходит кругом земли так, что смотрит на нас всё время одной и той же своей стороной. Другая сторона никогда не бывает нам видна. Никто не знает, как эта невидимая половина устроена. И только, облетев кругом луны, можно будет об этом узнать. Много ещё и других загадок скрывает в себе этот соседний с нами мир, и их откроют будущие лунные путешественники.
     
     
      ЗАВОЕВАТЬ НЕБО
     
      Такие разговоры вели мы о братом давно, лет сорок назад, когда я был ещё очень молод. Никто не помышлял тогда всерьёз о том, чтобы перелететь на луну. Но в наши дни пришла пора поставить и это дело на очередь. Люди хотят исследовать все уголки мира, стремятся всюду побывать, обо всём желают узнать. На земле они посетили уже почти все места, даже самые труднодоступные. С опасностью для жизни взбирались люди на высочайшие горы, спускались в тёмные подземные пещеры. Много раз переплывали океаны, пробивались через непроходимые леса, проходили бесплодные пустыни. Люди посещали и знойный экватор и ледяные полюсы. Поверхность земного шара исследована вдоль и поперёк.
      Но мир — не один лишь земной шар. Мир — это всё, что окружает нас на земле и на небе. Далеко в небесном пространстве есть и другие огромные шары, другие земли. Ближе всех — луна, подальше — планеты. Их тоже надо исследовать. До сих пор люди изучали луну и планеты только с помощью зрительных труб. Этого недостаточно. Чтобы узнать о луне больше, надо самим там побывать. Человек завоевал землю, теперь он хочет завоевать и небо.
      Но как это сделать? Каким образом добраться до луны?
      Казалось бы: чего проще? Существуют воздушные корабли (дирижабли), шары, самолёты: сесть в них и направить путь к луне! Однако, если вы станете доискиваться в книгах, как высоко до сих пор залетали дирижабли, воздушные шары и самолёты, то узнаете, что ни один человек не поднимался ещё над землёй выше 22 километров. Правда, это страшно высоко, в два с половиною раза выше вершины самой-высокой горы, но не приближает нас к луне ни на один шаг.
      Вы спросите, вероятно, почему же люди не залетают выше 22 километров. Что им мешает туда подниматься?
      Мешает то, что чем выше подниматься, тем воздух менее плотен. А ведь самолёты, воздушные шары и дирижабли опираются о воздух; если воздух чересчур разрежён, то держаться в нём они не могут. На таких высотах и дышать человеку нечем; приходится для дыхания брать запас воздуха с собою.
      Полёты на большие высоты делались вовсе не для того, чтобы приблизиться к луне, а чтобы изучить тот воздушный океан, который окружает наш земной шар. Все мы живём словно на дне этого океана и потому должны знать его свойства. Океан этот состоит как бы из двух этажей — нижнего и верхнего. Оба вместе составляют «атмосферу»; нижний этаж получил название «тропосферы», верхний — «стратосферы». Названия эти полезно запомнить: они часто встречаются теперь не только в книгах, но и в газетах.
      Нижний этаж — тропосфера — гораздо плотнее стратосферы, хотя они переходят одна в другую постепенно, без резкой границы. Но всё же границу провести можно. Она лежит примерно на высоте 10 километров. В пределах этого первого десятка километров (считая от земли) воздух при поднятии вверх становится всё холоднее; каждый километр подъёма переносит нас в воздушный слой, который градусов на пять, на шесть холоднее нижнего слоя. У границы стратосферы круглый год, зимой и летом, держится мороз градусов в 50 (по стоградусному термометру). Но выше, в стратосфере, сколько ни исследовали, не замечали, чтобы мороз заметно усиливался с подъёмом над землёй.
      В этом ещё не всё различие между тропосферой и стратосферой. Другое отличие в том, что туманы, облака, дождь, снег, бури бывают только в нижнем этаже воздушного океана; в стратосфере же небо всегда ясно, всегда безоблачно; дождей, снега, бурь не бывает там вовсе.
      Долго люди летали только в тропосфере, не умея проникнуть в разрежённый воздух стратосферы, и только очень недавно отважились залететь выше границы, отделяющей тропосферу от стратосферы. Это очень опасные полёты. Американский военный воздухоплаватель Грей, взлетевший в 1927 году на воздушном шаре до высоты почти 13 километров, не вернулся живым: когда шар опустился, Грея нашли в его корзине мёртвым.
      Для подъёма в стратосферу теперь пользуются очень большими шарами особого устройства, называемыми стратостатами. Бели бы вы увидели стратостат перед самым полётом, вас удивило бы, что он вовсе йе похож на шар; скорее он напоминает по форме огромную морковку. Это оттого, что в его оболочку вводят гораздо меньше газа, чем в ней могло бы поместиться. По мере того, как стратостат поднимается выше и попадает в слои всё более разрежённого воздуха, давление снаружи ослабевает (оттого, что воздух чем менее плотен, тем слабее давит); газ распирает оболочку изнутри всё заметнее; она раздувается и на большой высоте становится уже настоящим шаром. Вы понимаете теперь, почему шар не надувают до отказа с самого начала полёта: иначе он не поднялся бы до большой высоты, а лопнул бы гораздо раньше от внутреннего давления.
      У стратостата нет открытой корзины; вместо неё имеется закрытая наглухо кабина в форме шара, с тонкими, но очень прочными металлическими стенками. Находясь внутри такой кабины (или гондолы, как её называют воздухоплаватели), люди дышат не разрежённым и холодным воздухом окружающих высот, а запасом его, взятым с собою с земли. Страшный наружный мороз также не проникает внутрь гондолы: солнечные лучи, не задерживаемые облаками, прогревают металлические стенки гондолы так сильно что в ней бывает даже чересчур жарко.
      Первым поднялся на стратостате бельгийский учёный, профессор Пикар. Он сделал в 1931 и 1932 годах два полёта, достигнув небывалой до него высоты: около 16 километров. Но недолго числился он единственным человеком, так высоко забравшимся в стратосферу. Советские воздухоплаватели подняли флаг нашей страны ещё на большую высоту: сначала на 19 километров, потом на 22 километра. Подъём на 19 километров был совершён на стратостате «СССР» тремя военными воздухоплавателями: Прокофьевым, Бирнбаумом и Годуновым. На высоте 19 километров воздух в 15 раз менее плотен, чем внизу, у земли. Разрежённый воздух почти не отбрасывает тех лучей солнца, от которых зависит голубой цвет небесного свода; оттого безоблачное небо там даже при полном свете солнца почти чёрное и лишь слегка отливает синеватым оттенком.
      Второй стратостат построен был работниками ленинградского Осоавиахима и назывался «С-ОАХ-I», т. е. «Стратостат Осоавиахима первый». В нём поднялись лётчик Федосеенко, инженер Васенко и молодой учёный Усыскин. Замечательный успех, достигнутый ими, — высота в 22 километра, — куплен был ценою жизни этих самоотверженных завоевателей неба. Стратостат при спуске потерпел крушение, и все трое найдены были в гондоле мёртвыми. Гибель их, однако, не устрашила других исследователей, и сейчас работники Осоавиахима приступили уже к постройке нового стратостата «С-ОАХ-II».
      Для подъёма стратостатов существует предел, выше которого они никогда подняться не смогут. Строители стратостатов (например Годунов) считают, что предел этот лежит на высоте 40 километров, где воздух в 250 раз реже, чем тот, которым* мы дышим внизу. Никакой стратостат, как бы огромен он ни был, не сможет поднять людей выше чем на 40 километров.
      Хотя люди и не забирались пока сами выше 22 километров, они сумели всё же узнать кое-что о свойствах воздуха на более значительных высотах. Туда много раз запускали небольшие воздушные шары (примерно в 1-2 метра поперечником), с подвязанными к ним лёгкими инструментами. Инструменты эти устроены так, что они сами на перематывающейся ленте отмечают температуру воздуха и выполняют другие измерения. Шары эти, называемые шарами-зондами, удавалось запускать до высоты 36 километров. Выше разрежённый воздух не может их удерживать. На высоте 50 километров воздух в тысячу раз менее плотен, чем у земли; на высоте 100 километров — в 120 тысяч раз. На такой высоте, можно сказать, воздуха почти уже нет. Ещё выше пропадают последние его следы, и начинается безвоздушное небесное пространство. Одна сотня километров атмосферы — что значит это по сравнению с теми четырьмя тысячами сотен километров, которые отделяют землю от луны?
      Итак, на пути к луне лежит около 400 тысяч километров пустого пространства, через которое не может перебраться ни шар, ни дирижабль, ни самолёт.
      Даже если бы между землёй и луной был воздух, то и тогда на самолёте или воздушном корабле невозможно было бы долететь до луны. Расстояние до луны вдесятеро больше окружности земного шара. А может ли самолёт облететь десять раз кругом земли, нигде не опускаясь? Не может; ему не хватит бензина, не хватит даже, чтобы облететь землю один раз. Никакой самолёт, никакой воздушный корабль не мог бы унести с собою запас горючего для четырёхсот тысяч километров пути. Значит, будь даже пространство до луны заполнено воздухом, всё равно нельзя было бы до неё добраться на самолёте или на воздушном корабле. Для такого путешествия надо придумать какой-нибудь другой способ передвижения.
      Послушайте, что придумал для этого лет пятьдесят назад французский писатель Жюль Верн.
     
     
      ИЗ ПУШКИ НА ЛУНУ
     
      То, что придумал Жюль Верн, приходило, быть может, в голову и иному из вас. Надо, говорил он, устроить огромную пушку и зарядить её таким большим снарядом, чтобы внутри его могли поместиться люди. Пушка выстрелит, и если её хорошо направить, то ядро с путешественниками долетит до луны.
      Чтобы представить свою мысль яснее, Жюль Верн придумал такой рассказ. Трое смелых и изобретательных людей замыслили отправиться на луну. Для этого они отлили отвесно в земле чугунную пушку огромной, невиданной величины. Она уходила в землю на триста метров! Зарядили пушку сотней тонн сильного пороха. По пушке изготовили и снаряд — метра в три толщиною. Внутри его устроили и обставили комнату — каюту — для трёх пассажиров. Стены каюты имели тридцать сантиметров в толщину; в них были окошки из толстого стекла, чтобы можно было смотреть, кругом во время небесного перелёта. Путешественники взяли с собою особые приборы, которые очищали воздух, испорченный дыханием, и пополняли его убыль. Запасено было достаточно еды, питья и всего, что может понадобиться во время небесного путешествия
      Настал час отправления в путь. Смельчаки попрощались с друзьями и плотно заперлись внутри снаряда. Осторожно, особыми машинами, опустили снаряд на дно пушки, где уже приготовлен был огромный заряд пороха. Нажали кнопку — электрическая искра воспламенила порох. Раздался страшный грохот, и ядро с пассажирами
      Французский писатель Жюль Берн, автор романа «Из пушки на луну».
      Подготовка к полёту на луну внутри огромного пушечного снаряда (по роману Жюля Верна «Из пушки на луну»). Пушка уходила в землю на триста метров.
      ринулось сквозь атмосферу в пустоту небесного пространства. Скорость снаряда была громадная — двенадцать километров в секунду. От страшного сотрясения при выстреле все три путешественника потеряли сознание. Но скоро они пришли в себя и устроились в каюте довольно уютно. Они не чувствовали полёта ядра в небесном пространстве, потому что снаряд, покинув пушку, нёсся в пустоте совершенно плавно, без единого толчка. Почти четверо суток летели они сквозь мировое пространство, пока не приблизились к луне.
      Однако, на луну они всё же не попали. Случайно, ещё в самом начале перелёта, ядро слегка отклонилось от намеченного пути и оттого в конце пути проскользнуло мимо луны. Облетев её кругом, ядро снова направилось к земле. Опять четверо суток летели наши путешественники через пустое пространство, и наконец снаряд достиг земного шара. Здесь путников ожидала новая случайность: ядро попало в океан Но так как оно имело внутри полость, то не пошло ко дну, а всплыло на поверхность. Это была большая удача: попади снаряд в сушу, он при ударе раздавил бы своих пассажиров.
      Так счастливо закончилось небывалое путешествие из пушки на луну, хотя, отправляясь в путь, смельчаки вовсе и не думали о том, что смогут возвратиться.
      Описание этого перелёта полно интересных приключений. Пересказывать их здесь мы не станем. Кто желает, может прочесть книгу Жюля Верна «Из пушки на луну*. Для нас сейчас важно другое: важно узнать, что в этом занимательно придуманном рассказе действительно возможно и что совершенно несбыточно.
      Вы думаете, вероятно, что никакую вещь нельзя сбросить навсегда с земного шара. Невозможно, значит, и закинуть снаряд на расстояние луны. Видел ли кто-нибудь, чтобы брошенная вещь не падала тотчас обратно? Нет, никто ещё этого не видел. Но знаете, почему? Только потому, что кидали недостаточно сильно. Если бы вещь бросили с очень большой скоростью, получилось бы совсем иное. Сейчас вам станет ясно, что именно должно при этом произойти.
      Представьте себе, что на высокой горе поставлена пушка, которую направили вдоль земной поверхности. На рисунке (стр. 33) вы видите такую пушку. Поверхность земли нарисована (в верхней части рисунка) кривой; вы понимаете, почему: ведь земля — шар, и, значит, поверхность её кривая. Снаряды, выстреливаемые пушкой, летят тоже не прямо: путь их пригибается к земле оттого, что снаряды имеют вес. Если скорость снарядов не слишком велика, то пути их-искривляются круче, чем поверхность земли; поэтому ядро в конце пути встречает землю, падает на неё. Чем больше скорость полёта снаряда, тем дальше от пушки он падает. Может быть такая 'большая скорость, при которой путь снаряда изгибается ровно на столько же, на сколько изогнута поверхность земли. Что произойдёт с таким снарядом? Где он упадёт? Нигде не упадёт — ведь он даже не приближается к земле. Он сделает полный круг около земного шара и вернётся в то место, откуда вылетел. А если тем временем пушку убрать, чтобы она не мешала пролёту снаряда, то он сделает второй круг, потом третий, четвёртый и т. д. Одним словом, снаряд, выпущенный с такой большой скоростью, будет кружиться всё время около земного шара, нигде не падая на землю.
      Расчёт показывает, что это должно случиться с снарядом, который выстрелен пушкой со скоростью восьми километров в секунду. Таких сильных пушек ещё не существует. Нынешние не могут выбрасывать снарядов с такой скоростью; самые [могучие пушки дают своим снарядам скорость всего только полтора километра в секунду. Такие ядра, конечно, падают на землю. Но если бы удалось сделать пушку, которая выстреливала бы свои снаряды со скоростью восьми километров в секунду, мы получили . бы снаряды, вечно кружащиеся около земного шара, никогда на него не падая.
      Пойдём дальше. Пусть пушка, стоящая на горе, выстреливает ядра со скоростью больше восьми километров в секунду. Как полетит такое ядро? Оно тоже не упадёт на землю, а обежит вокруг земного шара, на этот раз по вытянутому кругу. При скорости же одиннадцати километров в секунду ядро удалится совсем от земли; круг вытянется так, что ядро сможет долететь до луны и даже занестись дальше.
      Значит, ничего нет невозможного в мысли закинуть пушечное ядро на луну. Конечно, теперь не существует ещё пушки, выстреливающей снаряды со скоростью одиннадцати километров в секунду. Однако, если б такую пушку удалось изготовить, её снаряды могли бы при метком выстреле попасть в луну.
      Но послать снаряд на луну — только половина дела. Это обстрел луны, а не путешествие на луну. Чтобы превратить обстрел в путешествие, надо посадить внутрь снаряда людей. И, конечно, нужно ещё, чтобы люди при выстреле уцелели. Эта вторая половина дела не менее важна, чем первая. Вели пассажиры не уцелеют, то не только отважные люди погибнут, но и всё предприятие потеряет смысл: никто луны не увидит. Нужно, чтобы пассажиры благополучно покинули жерло пушки, достигли луны да ещё возвратились невредимыми обратно.
      Вели путешественники обо всём заранее позаботились и запаслись, чем надо, то во время самого перелёта ничто угрожать им не будет. Главная опасность подстерегает их при выстреле. Зато опасность эта такова, что избегнуть её невозможно. Сотрясение при выстреле безусловно гибельно для пассажиров ядра, и нет никаких средств уберечься от него. Человеку так же опасно при выстреле сидеть внутри пушечного ядра, как и быть впереди его. Что может спасти человека, в которого стреляют из пушки, стреляют в упор, да ещё из такой чудовищной пушки? Гибель совершенно неизбежна.
      Значит, людям нечего и надеяться вылететь живыми из жерла пушки. А если бы даже снаряд вынес их из пушки невредимыми, то как вернулись бы они обратно? Где бы нашли они на луне пушку, которая выстрелила бы их назад на землю? Рассчитывать на счастливый случай? Это было бы уж слишком легкомысленно.
      Словом, для путешествия на луну пушка ещё менее пригодна, чем самолёты и воздушные корабли. Самолёт может поднять человека хоть на четырнадцать километров, пушка же не поднимет его живым ни на один сантиметр.
      Что же годится для полёта на луну? Какая летательная машина сможет вынести путешественников невредимыми из земной атмосферы в пустое небесное пространство, доставить на луну и возвратить потом снова на родную землю?
      Такой машиной будет та, которая устроена не подобно самолёту или пушке, а подобно ракете.
     
     
      КАК И ПОЧЕМУ ЛЕТИТ РАКЕТА
     
      Во время народных празднеств и гуляний в парках вам случалось, вероятно, видеть, как на вечернем небе взлетают огненные ракеты и высоко рассыпаются цветными звёздочками. Вам, может быть, удавалось иной раз подобрать на земле пустую ракетную трубку после её падения. Но как ракета устроена и почему она взлетает, вы, я уверен, не знаете. А между тем надо это знать. Иначе вы не поймёте, каким способом надеются люди «завоевать небо» — улететь в небесное пространство и посетить луну.
      Слово «ракета» — итальянское и означает «трубка». Ракета — трубка, набитая порохом. На рисунке (стр. 37) показано устройство небольшой ракеты — из тех, что служат для увеселения на празднествах. В картонную трубку плотно набивают порох такого состава, что он загорается не весь сразу, а горит постепенно. С одного конца трубка закрыта, с другого — открыта; против открытого конца выдавлена в порохе глубокая полость. Помощью шнура, проходящего через сужение в открытом конце трубки, зажигают порох внутри её, — ракета тотчас же быстро взвивается вверх. Чтобы, летя в воздухе, она не кувыркалась, а поднималась отвесно вверх, к ней прикрепляют сбоку длинную палку — «хвост» ракеты. Если хотят, чтобы ракета, поднявшись доверху, рассыпалась цветными звёздочками, надо в головную её часть положить ша-. рики бенгальского огня; когда порох догорит до этого места, шарики воспламеняются и разбрасываются.
      Набивать ракеты порохом — дело очень опасное; порох при сдавливании легко взрывается. Изготовлением ракет должны заниматься только люди, очень хорошо знающие это дело. Не вздумайте сами приниматься за такую работу: ничего, кроме беды, у вас не получится. Немало уже было несчастий — пожаров, увечий, гибели людей — при изготовлении ракет даже опытными людьми.
      Маленькая увеселительная ракета поднимается метров на шестьдесят-восемьдесят. Крупные ракеты с большим зарядом взлетают гораздо выше. В последние годы научились делать ракеты, поднимающиеся на десять и больше километров. Изготовление их связано с большой опасностью для жизни; ещё опаснее их зажигание и пуск. Люди, делающие опыты с большими ракетами, следят за ними не прямо, а через маленькое окошечко в толстой досчатой стене, отгораживающей. людей от ракеты. В иных случаях люди даже вовсе не глядят на взлетающую ракету сами, а выставляют фотографический аппарат, который и снимает ракету; заснятое потом рассматривают и изучают. Если при зажигании ракеты произойдёт взрыв, погибнет только аппарат, а не люди.
      Мы ничего ещё не сказали о том, почему зажжённая ракета взлетает вверх. При зажигании пороха в ракете образуется много горячего газа; ему тесно внутри её, и он стремительно вытекает через отверстие трубки. Ракету при пуске устанавливают открытым концом к земле, так что горячий газ вытекает вниз. Прежде думали, что этой струёй вытекающего газа ракета отталкивается от окружающего воздуха; оттого будто бы она и взвивается вверх. Многие ещё и теперь так думают. Но они ошибаются: причина полёта ракеты совсем другая. Вот в чём она состоит.
      Газ, накопляющийся при горении ракеты в её тесной полости, сильно сжат и распирает ракету во все стороны: вправо и влево, вперёд и назад, вверх и вниз. Напор вправо уравновешивается напором влево; напор вперёд уравновешивается напором назад. А напор вверх уравновешивается ли напором вниз? Одинаково ли давит в ракете газ вверх и вниз? Он давил бы одинаково, если бы внизу не было отверстия, но мы знаем, что внизу стенка с дыркой; значит, там не хватает части стенки, на которую газ мог бы напирать. Давление вниз поэтому меньше, чем давление вверх. Ясно, что раз напор вверх сильнее, то ракета и увлекается вверх.
      Вы видите, что ракета летит вверх напором не того газа, который из неё вытекает, и не того, который находится под ней, а напором того газа, который заключается внутри её самой. Для полёта ракеты безразлично поэтому, окружена ли она воздухом или же воздуха кругом неё вовсе нет. Отсюда следует то, о чём многие не подозревают: что ракета может летать, набирая скорость, в пустом пространстве. Более того, в пустоте она должна подниматься даже лучше, чем в воздухе, потому что ей не приходится тогда рассекать над собой воздух; ведь воздух — большая помеха быстрому движению.
      Ещё лучше поймёте вы истинную причину полёта ракеты, если сравните ракету с ружьём. Что происходит при выстреле из ружья? Курок спущен; от удара вспыхнул порох. В тесном пространстве ружейного ствола позади пули образовалось от горения пороха много горячего газа, который давит во все стороны. Ствол имеет прочные стенки, они не поддаются распору; впереди же нет стенки, там ствол заложен пулей, и газ стремительно выталкивает эту пулю из ствола. Но тот же газ напирает и назад, в сторону приклада. Пока пуля ещё не подалась, напор газа вперёд и назад был одинаков. Едва лишь пуля вылетела, давление газа вперёд прекращается вовсе, и остаётся только давление назад. Что же должно произойти с ружьём? Оно дёргается назад: ружьё, как говорят, «отдаёт».
      Спросите красноармейца, что он чувствует, когда пуля вылетает из ружья. Он скажет вам, что приклад ударяет его в плечо. Это «отдача» ружья. Она довольно сильна. Неопытного стрелка она иной раз больно ушибает, даже валит с ног. Стрелок должен знать, как надо стоять при стрельбе и как держать ружьё, чтобы отдача не причинила вреда.
      При стрельбе из пушек отдача, конечно, гораздо сильнее. В пушках прежнего устройства она откатывала назад тяжёлое орудие. В нынешних при выстреле скользит назад только ствол пушки, лафет же удерживается на месте.
      В чём сходство и в чём различие между ружьём и ракетой? Пороховой газ, образующийся в них при горении пороха, напирает в обе стороны; в этом сходство. Разница же та, что в ружье самое главное — вылет пули, в ракете же главное — отдача: силою отдачи ракета летит вверх. Другое различие в том, что заряд ружья вспыхивает мгновенно, весь сразу; заряд же ракеты сгорает медленно, постепенно.
      Запомним же самое важное из того, что мы сейчас узнали:
      1) ракета летит оттого, что на неё напирает газ изнутри;
      2) ракета при полёте не опирается о воздух;
      3) ракета может лететь в пустоте;
      4) заряд ракеты сгорает не мгновенно, как заряд огнестрельного оружия, а постепенно; поэтому и скорость свою ракета получает не сразу, а плавно, без сотрясения.
      Теперь понятно, почему изобретатели небесных кораблей поставили себе образцом именно ракету. Ведь только ракета может набирать свою скорость в безвоздушном пространстве, простирающемся между землёй и луной. И только корабль, устроенный подобно ракете, может быть пущен в небесный полёт так плавно, без рывка, что пассажиры внутри него уцелеют.
      Остаётся превратить ракету в летательную машину, которая могла бы поднимать людей. Как это сделать, будет рассказано в этой книжке дальше.
      Но прежде побеседуем о том, для каких целей употреблялись ракеты до настоящего времени.
     
     
      ДЛЯ ЧЕГО СЛУЖАТ РАКЕТЫ
     
      Вы не должны думать, что ракеты применяются только для украшения народных празднеств. Их употребляют и для различных других надобностей.
      В прежнее время, когда пушки не были ещё так дальнобойны и метки, как теперь, ракетами пользовались для переброски бомб: занесённые на ракетах в неприятельское расположение бомбы причиняли разрушения и пожары. Первыми стали пользоваться такими боевыми ракетами индусы; у них больше ста лет назад имелись в армии особые ракетные отряды из тысяч обученных людей.
      Англичане скоро переняли у индусов уменье изготовлять крупные боевые ракеты. Английская армия снабжалась ракетами весом до [двадцати килограммов; такими ракетами перекидывались бомбы на расстояние нескольких километров.
      Вслед за англичанами начали пользоваться ракетными бомбами австрийцы и немцы. Боевые ракеты во ^гаогих случаях были удобнее пушек, потому что, пользуясь ими, не надо было возить с собой тяжёлых орудий. Но затем пушечное дело улучшилось настолько, что для переброски бомб не имело уже смысла применять ракеты; пушки стреляли гораздо дальше и более метко, а главное — не допускали неприятеля на такое расстояние, с которого можно было бы стрелять ракетами. Поэтому ракетные бомбы в европейских армиях перестали употреблять. Но весьма возможно, что с дальнейшим развитием ракетной техники к таким снарядам снова возвратятся.
      В наши дни ракеты находят себе применение в военном деле, между прочим для освещения неприятеля в ночное время. Ракету пускают высоко вверх, и она своим огнём далеко освещает неприятельское расположение. В Красной армии «светящие» ракеты имеют в длину три четверти метра и снабжены палкой («хвостом») в полтора метра длиною. Весит такая ракета около шестнадцати килограммов. Зажжённая, она пролетает целый километр косо вперёд и к концу полёта выбрасывает сноп ярких звёздочек; звёздочки горят четверть минуты, освещая окрестность.
      Кроме светящих ракет, в Красной армии употребляются также ракеты «сигнальные». Они служат для передачи сигналов своим воинским частям в ночное время: высоко поднявшаяся ракета видна с далёкого расстояния.
      Полезная служба ракеты. Моряки пускают с берега на тонущий корабль большую ракету, несущую конец троса. Так устанавливается связь с командой гибнущего судна.
      В последнее время стали пользоваться ракетами, чтобы с их помощью поднимать очень высоко фотографический аппарат и оттуда снимать расположение неприятеля. Фотографическая ракета взлетает на шестьсот — тысячу метров. С такой высоты можно на ровной местности видеть на сотню километров во все стороны.
      Приносят пользу ракеты и морякам. Нередко случается, что нельзя пристать на лодке к тонущему кораблю, который гибнет недалеко от берега: волнение опрокидывает лодку. В таких случаях пускают с берега на корабль большую ракету, которая несёт с собой конец прочного троса. Поймав трос, команда корабля устанавливает с помощью его связь с берегом.
      Наконец есть ещё полезное применение ракет в мирной жизни: они служат для борьбы с градом. Особенно широко употребляются противоградовые ракеты в Швейцарии и у нас на Кавказе. Едва упадут первые несколько градин,, швейцарец пускает две-три ракеты: этого во многих случаях оказывается, говорят, достаточно, чтобы вместо града выпал дождь. Пуском трёх ракет защищается от града участок примерно в один квадратный километр; кругом же него выпадает не дождь, а град. Действие этих противоградовых ракет, впрочем, ещё недостаточно проверено.
      В самое последнее время в Австрии делается успешный опыт применения ракет для переброски почты через труднопроходимую горную местность. Дело удалось так хорошо наладить, что почта таким, способом пересылает даже заказные и денежные отправления.
     
     
      ЛЕТАТЕЛЬНАЯ МАШИНА РЕВОЛЮЦИОНЕРА КИБАЛЬЧИЧА
     
      Первый человек в мире, кому пришла мысль превратить ракету в летательную машину, был революционер Кибальчич. Полвека назад группа революционеров из тайного общества «Народная воля» подготовила убийство царя Александра П: он был убит бомбой, брошенной революционерами в его карету. Бомбу изготовил двадцатисемилетний революционер и изобретатель Николай Кибальчич. Это был знающий и искусный техник, сумевший сам изготовить и взрывчатое вещество
      Отправка почтовой ракеты в гористой местности в Австрии. Ракета несёт с собой письма, которые таким образом быстро доставляются соседнему почтовому отделению, расположенному за непроходимым ущельем.
      (динамит) и механизм бомбы. В точности рассчитал он, сколько надо взять для бомбы динамита, чтобы взрыв, во-первых, достиг цели, а во-вторых, «не причинил вреда лицам, случившимся на тротуаре при проезде государя, а также прилежащим домам» (приводим собственные слова Кибальчича из его показаний во время суда).
      Кибальчич вместе с другими участниками убийства царя был схвачен царскими властями, заключён в крепость и отдан под суд.
      Находясь под стражей, этот замечательный человек мало думал об ожидавшей его казни.
      Мысли его были заняты совсем иным: он размышлял над изобретением летательной машины.
      Надо заметить, что в то время не было ещё ни самолётов, ни воздушных кораблей, а были одни только воздушные шары, которые нельзя было направлять по желанию; они летели туда, куда дул ветер. Кибальчич же хотел придумать такую летательную машину, которую можно было бы направлять по желанию в любую сторону.
      Кибальчичу, как и всякому отданному под суд, был назначен защитник. Незадолго' до суда защитник посетил его в
      заключении и с удивлением увидел, что революционер «был погружён в изыскание, которое он делал о каком-то воздухоплавательном снаряде; он жаждал, чтобы ему дали возможность написать свои математические изыскания об этом изобретении. Он их написал и представил по начальству».
      Перед казнью Кибальчич просил, чтобы составленное им описание изобретения было показано сведущим людям. «Если моя идея, — писал он, — после тщательного обсуждения учёными специалистами будет признана исполнимой, то я буду счастлив тем, что окажу громадную услугу родине и человечеству. Я спокойно тогда встречу смерть, зная, что моя идея не погибнет вместе со мною, а будет существовать среди человечества, для которого я готов был пожертвовать своей жизнью».
      Кибальчич, заключённый в крепости, незадолго до казни изложил свой проект ракетной летательной машины.
      Но Кибальчича казнили, никому не показав его записки. Тотчас после казни пакет с описанием изобретения был спрятан полицией в секретном месте. А так как полиции было мало дела до летательных машин, то мысль Кибальчича долго оставалась для всего мира совершенно неизвестной. Тридцать шесть лет пролежал пакет с изобретением Кибальчича в тайниках царской полиции. И только в 1917 году, когда
      царская власть была низложена, пакет был открыт, и содержание его сделалось известным.
      В чём же состояло изобретение Кибальчича? Как предлагал он устроить летательную машину?
      То, что придумал Кибальчич, было совершенно ново. Его летательная машина не походила на воздушные шары того времени. Не похожа она также на самолёты и воздушные корабли наших дней. Занимаясь много и усердно взрывчатыми веществами, Кибальчич придумал способ использовать их, чтобы приводить в движение летательную машину.
      Вот как представлял он себе устройство такой машины. На рисунке (стр. 46), в верхнем углу, даётся не подлинный чертёж, сделанный Кибальчичем, — тот чертёж был бы вам непонятен, — а дополненный различными подробностями, облегчающими понимание. Вы видите на рисунке платформу, на которой укреплены две стойки. Они поддерживают открытый металлический сосуд, подвешенный между ними. Сосуд обращён дном вверх, а узким отверстием вниз. В сосуде имеется медленно сгорающий порох. Когда порох зажигают, образуется внутри много горячего газа, которому тесно в сосуде. Стремясь раздаться во все стороны, газ напирает на стенки сосуда и частью вытекает через отверстие вниз. Вы уже знаете, что должно произойти: напор газа на боковые стенки одинаков, но давление на верхнее дно сосуда сильнее, чем давление вниз, потому что вытекающая струя ни на что не давит; поэтому машина должна увлекаться вверх, если только она не слишком тяжела.
      Описывая свою машину, Кибальчич указывал на то, что она сможет не только подниматься вверх, но и лететь в любую сторону, куда захочет направить её команда. Для этого надо будет только поворачивать цилиндр закрытым концом в сторону движения. Ракета всегда летит в сторону, противоположную той, куда вытекает газ.
      Во времена Кибальчича не умели ещё строить никаких управляемых летательных машин. Вот почему, вероятно, Кибальчич совершенно не упоминает о другой замечательной особенности придуманной им машины — о том, что она могла бы летать не только в воздухе, но и в пустоте. Кибальчич знал это, конечно. Он не принадлежал к тем людям, которые ошибочно считают, будто ракета в полёте отталкивается струёй газа от воздуха под нею. В его записке приводится совершенно правильное объяснение полёта ракетной машины. Ему должно было быть поэтому ясно, что придуманная им машина не нуждается для полётов в окружающем воздухе и может даже вылететь за атмосферу. Если Кибальчич об этом не упоминает, то, очевидно, потому, что не время было говорить о полётах за атмосферу, когда не умели ещё хорошо летать в самой атмосфере.
      Свою мысль о летательной машине Кибальчич не считал доведённой до конца. Он хорошо понимал, что она нуждается в проверке и в испытании на деле, или, как говорят, «на опыте». Он писал: «Я не имел достаточно времени, чтобы разработать свой проект в подробностях и доказать его осуществимость математическими вычислениями». Эта работа была выполнена позднее другим замечательным русским изобретателем — Константином Эдуардовичем Циолковским.
     
     
      РАКЕТНЫЙ КОРАБЛЬ ЦИОЛКОВСКОГО
     
      Описание машины, придуманной революционером Кибальчичем, пролежало, мы знаем, почти сорок лет в тайниках царской полиции. А тем временем другой русский изобретатель, учитель Циолковский, пришёл к сходной мысли. Хотя он не мог ничего знать об изобретении Кибальчича, ум его направился по тому же пути. Он тоже придумал летательную машину, устроенную наподобие ракеты. Мысль свою Циолковский разработал математически, т. е. сделал все относящиеся к ней расчёты. Он доказал этими расчётами то, что осталось недоказанным у Кибальчича, а именно, что если заряд ракетной машины достаточно велик, то она непременно должна подняться и полететь. Всё дело лишь в том, чтобы машина несла с собой большой запас горючих веществ и чтобы струя газа вытекала из её трубы с значительной скоростью.
      Чем больше выгорело заряда и чем больше скорость вытекания газов, тем большую скорость развивает ракетный корабль.
      Чтобы отлететь от земли совсем и добраться до луны, нужна, мы знаем (стр. 30), скорость не меньше одиннадцати километров в секунду. Циолковский доказал точным расчётом, что ракетный корабль может достигнуть такой большой скорости; он вычислил даже, сколько для этого понадобится сжечь горючего вещества и какого именно вещества.
      Кибальчич предлагал заряжать ракетную летательную машину так же, как заряжаются все ракеты, — порохом. Однако, все мы знаем, что порох — вещество очень ненадёжное. С ним опасно иметь дело даже при изготовлении маленьких ракет. Подумайте, насколько же опасно заряжать порохом большую летательную машину, целый ракетный корабль. Такому союзнику нельзя доверить жизнь путешественников. Но нем же его заменить?
      Чем следует заменить порох, указал Циолковский. Он первый обратил внимание на то, что порох — не единственное и вовсе не самое лучшее вещество для заряжения ракет. Гораздо лучше действует так называемый «гремучий газ». Гремучий газ есть смесь кислорода (газа, которым мы дышим) и ещё другого газа — водорода. Если эти газы сильно охладить и сжать, то они превращаются в жидкости. Такие жидкости можно взять с собою на ракетный корабль в отдельных баках, а для сжигания смешивать их небольшими порциями. Водород отдельно от кислорода не взрывается, кислород сам по себе тоже не может взорваться, — поэтому такой заряд безопасен для ракетного корабля. Чтобы ракетный корабль мог покинуть земной шар, он должен иметь громадный запас горючего вещества. Порох в столь значительном количестве, наверное, взорвался бы ещё раньше, чем корабль двинулся бы в путь. Малейшее сотрясение такого порохового заряда, даже давление собственного веса, легко может вызвать взрыв, уничтожить не только самый корабль, но и опустошить всё далеко кругом него.
      Советский изобретатель Константин Эдуардович Циолковский. Он первый выполнил расчёты для будущего ракетного корабля.
      порох, надо только придумать хорошее устройство для их сжигания. Порох имеет, правда, одну выгоду: он сгорает чрезвычайно быстро, почти мгновенно. Оттого и говорят про порох, что он не горит, а взрывает. Это очень важная выгода для стрельбы, но при движении ракеты быстрота сгорания заряда не нужна и безусловно вредна для здоровья пассажиров.
      Ракетный корабль, придуманный Циолковским, одинаков по замыслу с летательной машиной Кибальчича. Но по внешности оба изобретения мало походят одно на другое. У Кибальчича — платформа с двумя стойками, которые поддерживают большой цилиндр с порохом. Теперь посмотрите на рисунке (стр. 50), как Циолковский представляет себе свой ракетный корабль.
      Часть оболочки корабля на рисунке снята, чтобы видно было внутреннее устройство. Вдоль корпуса корабля, внутри его, идёт труба, расширяющаяся к наружному, открытому, концу. Через эту трубу должен вытекать горячий газ при горении заряда. В узкий конец трубы особыми насосами будут накачиваться жидкий кислород и какая-нибудь горючая жидкость (жидкий водород, бензин и т. п.); здесь они смешиваются и зажигаются. Вместилища для обеих жидкостей очень велики; они, как вы видите, занимают большую часть небесного корабля. Циолковский рассчитал, что при меньшем заряде ракетный корабль не может получить нужной скорости. Газ, образующийся от горения, вытекает через широкий конец трубы наружу ив то же время напирает в сторону узкого конца, заставляя всю ракету лететь в этом направлений.
      В передней части ракетного корабля Циолковского будет устроена каюта. Она должна быть обставлена и оборудована примерно так, как каюты подводных лодок или гондола стратостата. Мы ещё будем беседовать об этом после.
      Вы, вероятно, хотите узнать, чем же отличается такой ракетный корабль от пушечного снаряда, придуманного Жюлем Верном. Мы знаем уже, что полёт людей в пушечном ядре невозможен: пассажиры в нём должны погибнуть. Почему же считается возможным полёт в ракетном корабле? Ведь и он должен покинуть землю с огромною скоростью — одиннадцати километров в секунду. Разница здесь не в величине скорости, а в том, как она получается. Сама по себе большая скорость для человека не вредна, мы даже её не чувствуем, как бы велика она ни была; вредно лишь быстрое нарастание скорости. Пушечный снаряд получает свою скорость почти сразу; нарастание скорости здесь чрезвычайно быстрое, — чувствуется сотрясение, гибельное для всякого живого существа. Ракетный корабль, наоборот, получает свою скорость понемногу: он начинает движение плавно и увеличивает скорость постепенно, пока не доведёт её до огромной величины. Такое незаметное нарастание скорости переносится людьми без вреда для здоровья.
      Вот первая выгода ракетного корабля, какой нет у пушечного снаряда. Другая выгода, не менее важна. Отправиться на луну мало — надо и назад вернуться. Безвозвратный полёт лишён смысла, даже если бы и нашлись люди, которые готовы были бы потерять жизнь ради такого путешествия. В пушечном ядре возвратиться нет возможности. В ракетном же корабле это вполне возможно. Нужно только захватить с собою настолько большой запас горючих веществ, чтобы не расходовать его целиком при отправлении в путь. Корабль должен спуститься на луну с некоторым запасом горючего, который и послужит для обратного путешествия.
      Вот почему будущий ракетный корабль — самая подходящая летательная машина для путешествия на луну. Лётчикам нужно будет, конечно, иметь в своей каюте всё необходимое для жизни: воздух, питьё, еду, даже тепло и свет в виде электрического отопления и освещения. Перелёт на луну и обратно должен отнять около двух недель. Запас питья и еды для нескольких человек на две недели не очень обременит корабль. Воздух для дыхания брать в полёт особо не придётся: на корабле ведь будет большой запас кислорода для горения, а кислород и есть то, что расходуется при дыхании. Электрическое отопление нужно будет пускать в дело не всё время: большую часть пути корабль будет купаться в солнечных лучах, которые согреют его достаточно. Как бы не пришлось, наоборот, терпеть чрезвычайный жар! Мы знаем, что воздухоплаватели, поднимавшиеся в стратосферу, где воздух охлаждён до 50 градусов мороза, страдали иногда от жары, а не от холода. Впрочем, и против этой беды будет под рукой хорошее средство: жидкий кислород так холоден, что понадобится лишь разбрызгать в каюте немного этой жидкости — и воздух её станет прохладным.
      Скажем теперь несколько слов о самом Циолковском. Этому замечательному человеку, прославившемуся рядом изобретений, теперь более семидесяти пяти лет. В 1932 году вся советская общественность чествовала его в день 75-летия. Циолковский родился в очень бедной трудовой семье, которая не в состоянии была дать ему даже начального школьного образования. Свои обширные познания он приобрёл без всякой помощи со стороны, путём самостоятельного чтения книг. Сорок лет был он учителем, а всё свободное время употреблял на учёные исследования и размышления над своими изобретениями. Эти изобретения Циолковского относятся к самолётам, к воздушным кораблям и к ракетному летанию. Он делал расчёты самолётов раньше, чем была построена за рубежом первая летательная машина. Точно так же опередил он западных учёных в расчёте воздушных кораблей. Придуманный им образец воздушного корабля с металлической оболочкой имеет много важных преимуществ по сравнению с существующими дирижаблями: дирижабль Циолковского должен оказаться дешевле, безопаснее и долговечнее нынешних воздушных кораблей. Но самое удивительное из всего придуманного Циолковским — его план перелёта на луну в ракетном корабле, о котором я сейчас рассказал.
      Долгие годы никто не ценил работ Циолковского, не признавал важности его изобретений и не оказывал ему никакой поддержки. Признание и помощь пришли только после революции, когда советская власть и общественность оценили его заслуги.
      Циолковский безвыездно живёт в городе Калуге и, несмотря на преклонные годы, неустанно занят работами над своими изобретениями. Я получил от него много важных указаний, которыми воспользовался, между прочим, и при составлении этой книжки.
     
     
      ИЗОБРЕТАТЕЛИ ЗА РУБЕЖОМ
     
      Кибальчич и Циолковский — не единственные изобретатели, придумавшие летательные машины наподобие ракеты. К этой же самой мысли пришли позднее изобретатели и за рубежом нашего отечества — в Америке и в Германии. Как Циолковский, ничего не зная о машине Кибальчича, через двадцать лет сам придумал ракетный корабль, так и американский учёный Годдард на двадцать лет позже Циолковского сам пришёл к мысли устроить громадную ракету для высокого подъёма. Он проделал ряд поучительных опытов, чтобы улучшить устройство обыкновенных ракет; между прочим, он доказал на деле, что в безвоздушном пространстве ракета должна лететь не только не хуже, но даже лучше, чем в воздухе.
      А ещё через несколько лет в Германии появилась книга немецкого учёного Оберта, который, ничего не зная ни о Кибальчиче, ни о Циолковском, ни о Годдарде, тоже пришёл к мысли устроить летательную машину наподобие ракеты. Как и Циолковский, он предлагает заменить порох горючими жидкостями: спиртом, жидким водородом и др., смешиваемыми перед зажиганием с жидким кислородом. Он выполнил множество расчётов, очень важных для тех, кто будет строить со временем ракетные летательные машины. Он придумал также устройство нескольких ракетных машин, больших и малых, которые должны служить разным целям.
      Что же означает такое совпадение мыслей четырёх изобретателей, не знавших друг друга? Почему люди, жившие так далеко один от другого, пришли к одинаковым мыслям?
      Потому, конечно, что найденное ими решение задачи полёта во вселенную — единственно верное. И если четыре изобретателя, каждый в отдельности, придумали одно и то же, то это несомненно доказывает, что все они напали на правильный путь.
     
      ОТ МЫСЛИ В ДЕЛУ
     
      Когда в самые последние годы изобретатели ракетных машин стали переходить от замысла к исполнению, то прежде всего поставили перед собою такой вопрос: как испытать, что ракета действительно может двигать не только себя, но и целую машину? С этой целью сделано было несколько попыток двигать ракетами повозки на земле.
      Первые опыты такого рода делались с автомобилями. Снимали с автомобиля мотор и в задней части кузова устанавливали крупные ракеты. После нескольких проб сделан был опыт с автомобилем, который нёс на себе двенадцать ракет. Опыт удался: при зажигании (электрической искрой) одной ракеты за другой автомобиль помчался с возрастающей скоростью и менее чем в десять секунд разогнался до ста; километров в час. Второй опыт был произведён с автомобилем лучшего устройства: он имел такую форму, которая помогала ему рассекать впереди себя воздух; по бокам имелись крылья — но не для того, чтобы поднимать машину вверх, а, напротив, чтобы прижимать её к земле, не давать ей отделяться от почвы. Ракет было поставлено вдвое больше, чем при первом опыте, — двадцать четыре. Когда они были зажжены, автомобиль сорвался с места и стремительно помчался, развив скорость двести двадцать километров в час.
      При третьем опыте автомобиль с тридцатью шестью ракетами достиг скорости двухсот сорока километров в час.
      Следующий опыт был сделан с ракетной «автодрезиной», т. е. с автомобилем на рельсах, в котором двигателем служили ракеты. Ожидалась такая большая скорость, что опасно было посадить человека; решено было испытать машину без седоков. Один седок, впрочем, был: чтобы узнать, как действует на здоровье быстрое нарастание скорости, поместили в автодрезину клетку с кошкой. Пускали машину с двадцатью четырьмя ракетами дважды. В первый раз она разогналась до скорости ста восьмидесяти километров в час.
      Второй раз ждали ещё большей скорости, но испытание кончилось несчастьем: машина сорвалась с рельсов и упала под откос; ракеты взорвались все сразу и уничтожили автомобиль. Погиб и четвероногий пассажир автодрезины.
      При помощи ракет можно было бы сообщить повозкам очень большую скорость, но колёса не могут делать слишком большое число оборотов. При чересчур быстром вращении они разрываются на части. Вот почему сделаны были опыты с ракетными санями: здесь нет колёс, и можно безопасно развить огромную скорость. Сани, снабжённые восемнадцатью ракетами, достигли скорости, вдвое большей, чем ракетный автомобиль: четыреста километров в час. Интересно, что на большей части своего (правда, не длинного) пути полозья не оставили даже следов на снегу. Очевидно, сани неслись в воздухе, поверх снега.
      Эти опыты имеют то значение, что показывают, какую силу могут, развивать ракеты. Но ошибочно думать, что в будущем на автомобилях взамен моторов станут употреблять ракеты. Нет расчёта это делать: для тех скоростей, с какими может ехать автомобиль, ракеты обходятся дороже мотора. Выгодны ракеты лишь в случае очень больших скоростей. С такими большими скоростями можно двигаться только в пустоте, где воздух не мешает движению и где не приходится сворачивать в сторону, встречая преграду.
      Вы видите, что ракета пригодна для полётов за атмосферу. Делались опыты и с мотоциклетами, велосипедами, а также с ракетными самолётами, т. е. с самолётами, на которых мотор был заменён ракетами. Опыты показали полную пригодность ракет и для самолёта. Для полётов в плотной части атмосферы ракеты, однако, не будут применяться, разве лишь для облегчения старта, т. е. начала полёта.
      Зато ракеты окажутся незаменимыми при проникновении в самые высокие слои атмосферы, где разрежённый воздух не может поддерживать обыкновенные самолёты и воздушные корабли.
      Те же опыты обнаружили, однако, что необходимо совсем отказаться от такого опасного горючего, как порох, и заменить его более безопасными горючими жидкостями: спиртом, бензином, жидким водородом и др.
      Чтобы продвинуть дело дальше, надо было научиться изготовлять ракеты, заряженные горючими жидкостями.
     
     
      ПЕРВЫЕ ШАГИ
     
      Пороховые ракеты употребляются уже давно, и люди научились изготовлять их очень хорошо. Ракеты же с жидким зарядом только недавно придуманы. Устройство их не такое простое, как ракет пороховых.
      В пороховой ракете нет, в сущности, никакого особого устройства: вся внутренность её состоит из одной лишь пороховой массы. Такая ракета после того, как её подожгли, не требует никакого управления дальнейшим горением: заряд сам догорит до конца. Не то с горючими жидкостями. Для них нужны в ракете особые вместилища, отдельно для горючего и для жидкого кислорода. Кроме того, надо было придумать устройство, которое само подавало бы понемногу обе жидкости к очагу, где происходит горение. В то же время нужно уберечь остальной запас от смешения и взрыва.
      К изготовлению ракет с жидким зарядом приступили только в самые последние годы. Особенно усердно работал над этим немецкий учёный Оберт, который уже с четырнадцатилетнего возраста размышлял над способами совершать полёты за атмосферу. Мы раньше говорили, что этот изобретатель, ничего не зная о других, сам пришёл к мысли об устройстве ракетного корабля.
      Немцам удалось построить ракету в рост человека — ракету совершенно нового образца, с жидким зарядом. Эта ракета уже много раз испытана в Берлине и работала превосходно: она взлетала около ста раз, правда, пока ещё невысоко, но достаточно, чтобы доказать пригодность её устройства.
      Когда у нынешних строителей ракет окажется достаточно денег, ими будет построена более крупная ракета, с таким большим зарядом, что она сможет лететь вверх километров на сто. Это будет уже заметный успех на пути к завоеванию неба, который принесёт большую пользу науке. На такую высоту не удавалось ещё запускать ни одного воздушного шара даже без людей: самый высокий подъём шара без людей не превышал тридцати шести километров. Пушечные ядра случалось, правда, закидывать до 50 километров, но ведь, упав, снаряды не приносят никаких сведений о тех высотах, где они побывали. Поэтому учёным почти ничего не известно о воздухе выше тридцати шести километров; они могут только делать догадки о том, из чего он состоит, насколько разрежён, насколько охлаждён и т. д.
      Вы спросите, вероятно: как же можно будет это узнать, если на ракете не поднимется человек? Человека вполне может заменить инструмент, устроенный так, что он сам записывает своё показание; об этом было уже сказано в начале книжки. Например, учёные придумали градусники, которые сами записывают то, что они показывают; придумали и другие инструменты-самописцы. Ракета унесёт с собою вверх такие самописцы, которые потом упадут вниз на большом зонте (парашюте); благодаря парашюту падение замедляется настолько, что инструменты не пострадают от удара о землю.
      Но не думайте, что сразу же после этого можно будет построить большую ракету для полёта на луну. Нет, до полёта на луну ракета должна пройти долгий путь развития, постепенно, шаг за шагом, приближаясь к ракетному кораблю для далёких путешествий в небесное пространство.
      Какой будет следующий шаг? Вероятно, устройство большой ракеты для перевозки почты через океан — из Европы в Америку и обратно. Ракета с грузом писем будет перекинута за океан не через воздух: большая часть пути будет лежать выше атмосферы. Ракета вылетит из атмосферы, пройдёт в пустоте несколько тысяч километров и, приблизившись к материку Америки, снизится снова в атмосферу, чтобы спуститься на землю. В пустом пространстве нет помехи движению, и потому перелёт может быть сделан с огромной скоростью — в полчаса. Подумайте: почта, которую пароход везёт в Америку почти неделю, будет доставляться в полчаса! Это не только очень скорая почта, но и очень дешёвая. Отправка ракеты, правда, будет стоить несколько тысяч, но ведь она понесёт с собой не одно письмо, а несколько тысяч. Значит, ракетная почта обойдётся примерно по рублю за письмо. По быстроте передачи такая почта даже опережает телеграф. Если бы содержание тысяч писем было передано слово за словом по телеграфу, потребовалось бы не полчаса, а, пожалуй, целые сутки и стоило бы это не по рублю за письмо, а по нескольку сот рублей. Вы видите, что ракетная почта будет очень выгодна, и ею охотно будут пользоваться. А вместе с тем разовьётся ракетное дело; это облегчит его дальнейшие шаги.
      Вслед за почтовой ракетой придёт пора устроить для полётов в Америку ракетные самолёты с пассажирами.
      Самолёты эти полетят не только над водяным океаном, но и над океаном воздушным — над атмосферой. Там нет ни бурь, ни снега, ни туманов — ничего, что могло бы помешать полёту и что так затрудняет теперь воздушные путешествия через океан на обыкновенных самолётах
      Испытание ракеты с жидким зарядом в Германии. Достигнув высшей точки подъёма, ракета опускается вниз на парашюте. Такой опыт проделывали уже больше сотни раз.
      и дирижаблях (воздушных кораблях). Поэтому сообщение между материками можно будет наладить совершенно правильно: время прибытия ракетного самолёта будет назначаться заранее с такою же точностью, с какой сейчас назначается время прибытия железнодорожных поездов. Правда, выше атмосферы нечем дышать, но воздух (кислород) будет взят лётчиками с собой; так уже и теперь делают лётчики, поднимающиеся на стратостатах и на самолётах в очень высокие слои атмосферы, где трудно дышать из-за малой плотности воздуха.
     
     
      ЗАГЛЯНЕМ В БУДУЩЕЕ
     
      Через много лет, когда всё сейчас намеченное удастся постепенно сделать и строители крупных ракет получат большой опыт в их сооружении, тогда придёт наконец пора совершить и перелёт на луну. Построят огромную ракету — величиной с большой пароход — и наполнят её таким обильным запасом горючего, что его хватит на перелёт на луну и обратно.
      Найдутся, без сомнения, отважные люди, которых не устрашат никакие опасности, связанные с первым лунным перелётом. Это будет изумительное путешествие — самое удивительное и самое смелое из всех, когда-либо совершившихся за время существования человечества. Подумайте: человек отправится завоёвывать небо!'
      Не знаю, доведётся ли мне дожить до того часа, когда ракетный корабль ринется в небесное пространство и унесёт на луну первых посетителей. Но вы, молодые читатели, весьма возможно, доживёте и до того времени, когда между землёй и луной будут совершаться правильные перелёты. Кто знает, может быть, кому-нибудь из вас посчастливится даже самому проделать такое путешествие
      Как же будут происходить лунные перелёты? Попробуем заглянуть в будущее и нарисовать вероятную картину путешествия на луну и обратно.
     
     
      ЛУННЫЙ ПЕРЕЛЁТ
     
      Вы забрались через небольшой люк в тесную каюту ракетного корабля и заботливо заперли за собою двойные дверцы. Ни одной щёлочки не должно быть в дверцах: ведь вы полетите в пустоту, а там весь воздух каюты мгновенно улетучится, если где-нибудь останется хоть самая маленькая скважинка.
      Вы ещё находитесь на земле, но уже отделены от земного мира. Сноситься с товарищами, которые собрались вас проводить, больше невозможно. Нельзя даже их. видеть: толстые стёкла окошек пришлось закрыть наружными ставнями, чтобы они не расплавились, когда корабль будет прорезывать атмосферу и разогреется от этого.
      Однако в каюте не темно: войдя, вы повернули выключатель электрического освещения, и яркий свет залил комнатку. Пока ракета ещё не начала полёта, рассмотрите ваше тесное жилище. Стены, потолок, пол — всё обито мягкой кожей: ударяешься о них без боли, как о мягкий тюфяк. Значит, нечего бояться толчков и сотрясений. Стол, табуреты, шкафчики — вся мебель привинчена в полу; она тоже не пострадает при сотрясении. По стенам укреплены странные приборы. Вот щит с электрическими измерителями, кнопками, выключателями, рубильниками. Управлять всем этим придётся не вам: с вами едет опытный ракетный пилот, уже проделавший не раз путь на луну и обратно. Есть в каюте приборы, засасывающие и очищающие воздух, который вы выдыхаете; есть и сосуды с жидким кислородом для пополнения его убыли в каюте. Как видите, нет опасности задохнуться от недостатка воздуха, если только путешествие пройдёт благополучно и не затянется чересчур долго сверх намеченного срока. Всё это не ново для вас: гондола стратостата была оборудована примерно таким же образом.
      Но где же запас провизии? А, вот трап в полу, ведущий в нижнее помещение. Загляните туда: ящики, бочонки, мешки, свёртки — пищи достаточно.
      Перелёт на луну и обратно должен длиться две недели; на луне долго задерживаться не будете — значит, провизии хватит. Для приготовления пищи имеется в каюте удобная электрическая кухня.
      На стене висит какая-то необычайная одежда, похожая на костюм водолаза и окутанная шнурами. Кто её наденет? Легко догадаться: одежда приготовлена для вас самих. Вспомните, что на луне нельзя дышать так, как на земле: там воздуха нет. Чтобы выйти из каюты ракетного корабля на лунную почву, придётся одеться в этот резиновый костюм с металлическим шлемом для головы. Его надуют воздухом, которым вы будете дышать и который не даст вашей крови вы-
      ступить наружу. Кроме того, за спиной у вас будет металлический ранец с запасом сгущённого воздуха К
      Сейчас наступит момент отправления корабля в путь. Пилот советует всем лечь в койку, подвешенную на пружинах.
      — Вам предстоит три-четыре не особенно приятных минуты, — говорит он. — Перенесите их стойко; всё пройдёт без вреда для вашего здоровья. Готовы? Пускаю машину.
      Пилот подходит к приборам, размещённым на щите, и берётся за одну из рукояток,-чтобы начать сжигание горючего в ракете корабля.
      Оглушающий рёв доносится из машинного отделения, одновременно что-то странное делается с вашим телом: оно словно отяжелело в несколько раз. Пробуете двинуть рукой, шевельнуть ногой, — они кажутся вам налитыми свинцом! Приподнять своё тело над койкой не хватает сил — настолько оно грузно. Откуда такая тяжесть?
      Дело в том, что корабль летит вверх, стремительно увеличивая свою скорость. Пока он разгоняется, койка под вами подпирает ваше тело. Ведь она прикреплена к каюте и вместе с ней словно силится обогнать ваше тело. Отсюда и напор на вас снизу. Вам же кажется, что это вы сами прижимаетесь к койке, сделались тяжелее. И не только ваше тело — все вещи на ракетном корабле тоже сильнее давят на свои опоры; значит, они тоже становятся тяжелее.
      Дышать трудно; на грудь словно налегает тяжёлый груз; сердце бьётся чаще. Долго ли продлится эта мука?
      — Ещё полминуты, — успокаивает вас пилот, — и всё кончится. Теперь вы раза в три тяжелее обычного, а опыты показали, что отяжеление втрое на короткое время не причиняет вреда здоровью. Ну, вот корабль и достиг требуемой скорости. Я прекращаю горение в ракете. Готовьте к новой неожиданности.
      Поворот рычага — и тяжести как не бывало. Но то, что вы теперь чувствуете, ещё страннее прежнего. Вы положительно не верите -своим чувствам. Ничего подобного вам и во сне не снилось: вы совершенно перестали весить. Вы потеряли свой вес целиком, без остатка!
      Что же произошло? Только то, что тело ваше уже не давит на свою опору. Горение в ракете прекращено, скорость корабля больше не нарастает. Он брошен теперь в пространство, как пуля из ружья. До сих пор, пока скорость корабля нарастала, пол каюты словно настигал вас и подпирал ваше тело снизу. Но сейчас и вы, и каюта движетесь одинаково быстро, а следовательно, не напираете друг на друга. Если вы на свою опору не давите, то это ведь и значит, что вы ничего не весите. И все вещи в каюте тоже ничего не весят.
      Посмотрите, что проделывает перед вами ради шутки пилот: он роняет из рук свои карманные часы, — и они повисают в воздухе, не опускаясь к полу.
      Вы не должны удивляться тому, что часы не па тают. Почему должны они падать? Земля, конечно, их притягивает, замедляя их полёт в пространстве. Но притягивает она также весь летящий корабль и тоже замедляет его полёт; то и другое она замедляет в одинаковой мере. Часы и каюта мчатся, следовательно, с одной скоростью, не приближаясь и не удаляясь друг от друга. Поэтому часы и остаются на неизменном расстоянии от пола. Если вы слегка подпрыгнете, то тоже будете витать в воздухе.
      Вы хотите проверить это: подпрыгиваете — и мягко ударяетесь головой в обитый кожей потолок каюты. Но здесь вы не остаётесь: отскакиваете от потолка и ударяетесь о пол. На полу также не можете удержаться: отлетаете снова к потолку и качаетесь так между полом и потолком.
      — Хватайтесь за поручень, — кричит пилот, — иначе не остановитесь!
      Вам удаётся поймать один из поручней, прикреплённых к стенам каюты, и невольные качания ваши прекращаются.
      В течение всего перелёта на луну, кроме нескольких минут спуска на её поверхность, вы будете лишены своего веса. Вам придётся в этому привыкнуть и приучить себя ходить не на ногах, а на руках, хватаясь за поручни, или даже вовсе плавать в воздухе, как рыба в воде.
      Но привыкнуть не так-то легко. Ведь не только вы сами потеряли вес, но невесомыми сделались и все вещи в каюте. Чуть до чего дотронулись, оно снимается с места и начинает медленно ходить по комнате туда и назад. Хорошо, что столы, табуреты, шкафики привинчены наглухо к полу и стенам каюты: иначе всё это шаталось бы в воздухе. Вам с непривычки приходится долго охотиться за каким-нибудь нужным листком бумаги, который вы положили возле себя. Разыскать его и поймать не легче, чем охватить руками живую бабочку на лугу, — листок при приближении руки» уносится движением воздуха. А если вы выпустите из рук карандаш, можно с ним распроститься навсегда: легче поймать пушинку в воздухе, — в земной атмосфере пушинка хоть что-нибудь весит, а здесь карандаш не весит ровно ничего.
      Вам понятно теперь, почему среди припасов, взятых на борт ракетного корабля, вовсе нет сыпучих продуктов, как мука, крупа, горох Развяжете такой мешок, и от малейшего толчка, от едва заметного движения воздуха всё это рассеется по каюте. Собрать рассеянное невозможно, разве только вылавливать сачком. А между тем этим засорённым воздухом пришлось бы ведь дышать, и стоило бы крупинке или горошине попасть в дыхательное горло, как начался бы судорожный кашель, который легко может причинить удушение.
      Вам хочется пить. Добираетесь до шкафа и извлекаете из него кувшин с водой, плотно закрытый крышкой. Сняв крышку, наклоняете кувшин над стаканом. Но вода не льётся. Наклоняете кувшин круче, опрокидываете его совсем — ни капли не выливается. «Да есть ли в кувшине вода-то?» сомневаетесь вы. По весу не узнать: посуда и полная и пустая здесь одинаково ничего не весит. Заглядываете внутрь: вода есть. Снова опрокидываете кувшин — ничего не выливается. Ну, конечно: может разве вода литься, раз она ничего не весит?
      Как же всё-таки добыть воду из кувшина? Пилот советует вам хлопнуть ладонью по донышку. Так и поступаете. Что это? Из кувшина выскочил большой водяной шар, чуть не с тыкву величиной. Это здесь такие капли: раз вода в кувшине ничего не весит, она вся должна собраться в одну большую каплю.
      Недолго думая, вы приставляете губы к капле, висящей в воздухе, и стараетесь втянуть в себя глоток жидкости. Но едва губы ваши коснулись капли, как вода разливается по вашему лицу, обволакивает голову, расползается под платьем по телу.
      — Ловите! — кричит вам пилот, кидая полотенце. — Напрасно поторопились: я только хотел дать вам трубочку, через которую вы могли бы пить из этой капли, не принимая холодной ванны.
      Да, не легко привыкнуть ко всем неожиданностям этого странного мира, в котором ни одна вещь ничего не весит и никуда не падает, — мира, где суп не выливается из опрокинутой тарелки, где тело ваше носится в воздухе, как пушинка, где нельзя даже глотнуть воды по-человечески.
      Вы начинаете опасаться, что в этом мире невозможно будет ни пить, ни есть: проглоченный кусок не дойдёт до желудка, остановится на полпути, раз он ничего не весит. Но бояться этого нечего: пища опускается изо рта в желудок вовсе не силою тяжести: она проталкивается туда стенками пищевода. Будь иначе, как могли бы пить воду животные с длинной шеей, например жирафа, которая, когда пьёт? опускает голову ниже своего желудка? В цирке мы видим гимнастов, которые пыот воду через трубку, стоя на руках вниз головой. Здесь нет обмана: каждый глоток проталкивается в желудок схватками стенок пищевода.
     
     
      Время путешествия тянется однообразно. Часы проходят за часами, но день не сменяется ночью. Солнце без устали льёт яркие лучи сквозь стеклянные окна каюты и так согревает комнату, что не приходится вовсе пускать в дело электрическое отопление. Напротив, становится чересчур жарко, и надо позаботиться об охлаждении каюты. Пилот берёт сосуд с жидким кислородом и разбрызгивает его в каюте. Страшно холодная жидкость заметно освежает помещение и, испаряясь, подбавляет в нём кислорода.
      Вы подходите к окошечку каюты, чтобы взглянуть нa то, что делается за бортом небесного корабля. Странное дело: солнце ярко сияет, а небо черно, как в самую тёмную южную ночь, и на нём во множестве выступают яркие звёзды. Так и должно быть: голубой цвет неба на земле зависит только от воздуха; где воздуха нет, там небо черно. Кругом корабля вовсе нет воздуха, оттого небо так чёрно. Причиной того, что звёзды на земле не видны днём, также является воздух: его частицы всюду рассеивают солнечные лучи, которые перебивают слабый свет звёзд. Вокруг небесного корабля нет этой сияющей воздушной завесы. и оттого звёзды светят там при полном блеске солнца.
      Если хотите полюбоваться видом неба не ив окошка, а на воле, можете покинуть корабль и совершить прогулку в пространстве. Вы удивлены? Боитесь, что упадёте в бездну, что задохнётесь от отсутствия воздуха и, вдобавок, замёрзнете на страшном морозе, который вечно стоит в мировом пространстве? Страхи ваши напрасны: не случится ни того, ни другого, ни третьего.
      Во-первых, вы никуда не упадёте, потому что вы брошены в пространство вместе с кораблём и будете всё время двигаться о ним, находитесь ли внутри его или выбрались наружу. Чтобы вернуться без хлопот обратно на корабль, вам придётся только, покидая его, привязаться к нему на проволоке: хватаясь за неё, подтянете себя в кораблю. Как видите, с этой стороны вам ничто не угрожает.
      Во-вторых, вы не задохнётесь, потому что будете одеты в особый костюм, надутый воздухом, да ещё будете иметь запас сжатого воздуха в ранде за вашей спиной.
      И, в-третьих, не замёрзнете, потому что солнце своими лучами будет согревать вас в вашем костюме, как согревало до сих пор в каюте. Для большего спокойствия захватите с собою электрические грелки, соединённые проводами с машиной на небесном корабле.
      Итак, нечего опасаться прогулки за борт корабля. Надевайте «водолазный» костюм (его бы следовало, пожалуй, назвать «пустолазным»), запасайтесь всем, чем надо, и, осторожно открыв двойные двери каюты, безбоязненно выскальзывайте в мировое пространство. Вы увидите дивное зрелище. Звёзды, яркие и многочисленные, окружают вас со всех сторон, светят над головой и под ногами, блистая на чёрном бархате неба. Они не мигают, как на земном небе, а горят спокойным сиянием: где нет воздуха, там не может быть и мерцания.
      Среди звёздной пыли, усеивающей чёрное небо, сияет нестерпимо яркое солнце. Оно не похоже на то солнце, которое вы видели на земном небе. Оно не желтоватое, а ослепительно белое с синеватым отливом. Его окружает жемчужное сияние. Это наружная оболочка солнца, его «корона», которая обычно с земли не видна сквозь толщу сияющего воздуха; её удаётся видеть с земли только во время полного солнечного затмения.
      Видна на небе и луна, в форме полукруга. Она заметно крупнее, чем при взгляде с земли. Понятно, почему: мы уже на много ближе к ней после долгих часов небесного путешествия.
      Кроме луны, на небе сияет ещё одно большое светило, тоже в виде полукруга, но обращённого выпуклостью в противоположную сторону, чем луна. Оно занимает больше места, чем солнце и луна. Что это за новое светило? Почему вы никогда не видели его с земли? Причина понятна: вы сами жили на нём и, разумеется, не могли видеть его на небе. Ну, конечно, ведь это земной шар, который вы покинули! Он сияет, залитый солнцем, как все другие планеты, только кажется крупнее их, потому что вы недостаточно ещё от него удалились. Собственными глазами убеждаетесь вы, что земля, на которой живут люди, тоже небесное светило и что, в сущности, все мы живём на небе.
      У вас кружится голова, когда вы окидываете восхищённым взором этот безграничный простор вселенной, великую картину мироздания. Утомлённые новизною зрелища, вы спешите вернуться в каюту,' чтобы отдаться мыслям о земле, о небе, о вашем необычайном путешествии.
      Здесь приходит вам на ум вопрос: почему, когда вы совершали прогулку «за борт», вам казалось, что небесный корабль направляется вовсе не к луне, а куда-то в сторону? Он и в самом деле летит не туда, где сейчас находится луна. Не забудьте, что ваш перелёт в один конец должен длиться шесть суток, а за этот срок луна успеет обойти чуть не четверть неба. Место, где она должна очутиться спустя шесть суток после вашего отлёта, в точности рассчитано. Туда-то и направляется корабль. Сейчас луны там ещё нет. но она не опоздает явиться вовремя.
      Луна становится крупнее. Она растёт на ваших глазах, и вы уже хорошо различаете на ней простым глазом такие подробности, какие с земли видны только в хороший бинокль.
      Примерно после ста часов полёта капитан небесного корабля объявляет вам, что вы наконец достигли «перевального пункта путешествия», как он выражается. Корабль пролетел девять десятых пути и находит ся теперь на той невидимой границе, где притяжение могучей земли уравновешивается притяжением маленькой луны. Здесь словно кончается власть земли и начинается власть луны. С этого времени вы больше не летите на луну, вы на неё па даёте — сначала медленно, потом быстрее и быстрее. Через тридцать часов такого падения вы очутитесь на её поверхности.
      Итак, вы уже вступили в мир, управляемый луной, хотя вас отделяет от неё ещё сорок тысяч километров. Огромный круг луны занимает теперь на небе в сто раз больше места, чем при взгляде с земли. Простым глазом видите вы кольцевые горы и равнины этого загадочного мира. С каждым часом подлетаете вы к луне всё ближе и ближе, мчитесь быстрее и быстрее.
      Если падение будет так продолжаться, то корабль, ударившись о лунную почву, разобьётся вдребезги. Удар не будет даже смягчён воздушной подушкой: вокруг луны нет атмосферы. Поэтому, когда ракетный корабль достаточно приблизится к луне, пилот примет меры, чтобы ослабить гибельную быстроту падения. Что же он сделает? Он повернёт корабль ракетой к луне и снова начнёт сжигать горючее: газ будет вытекать в сторону луны, и оттого скорость корабля станет уменьшаться. Короче сказать, пилот поступает так же, как машинист паровоза, когда даёт «контр-пар». Так постепенно уничтожится почти без остатка вся скорость корабля, и он плавно, без толчка, сядет на лунную почву.
      Наконец этот момент наступил. Спуск, прошёл благополучно, и корабль лёг на почву луны. Вы и лётчик надеваете на себя «водолазные» костюмы и не без волнения покидаете каюту, чтобы ступить ногой в новый, неведомый мир.
     
     
      ПРОГУЛКА ПО ЛУНЕ
     
      Первые же шаги по луне вызывают ваше удивление. Хотя вы не летите больше в небесном пространстве, а стоите обеими ногами на твёрдой почве, тело ваше и тут заметно легче, чем было на земле. Вы чувствуете, что потеряли на луне значительную часть вашего веса. Малейшее усилив вызывает последствия, которых вы никак не ждали. Каждый шаг переносит вас на полдюжины земных шагов; лёгкий прыжок поднимает ваше тело на два-три метра над почвой. Если на земле вы могли с разбега перепрыгнуть через канаву в три метра шириной, то на луне вы, разбежавшись, переноситесь через ущелье в восемнадцать метров.
      Не оттого ли стали вы здесь так легки, что костюм ваш надут воздухом? Конечно, нет: на луне нет атмосферы, и даже самая лёгкая вещь падает здесь вниз совершенно так же, как и самая грузная.
      Ракетный путешественник на лунной почве. Так как на луне нет воздуха, то, покидая ракетный корабль, необходимо надеть на себя особый костюм наподобие водолазного.
      В пустоте все вещи падают с одинаковой скоростью — таков закон природы. Причина лёгкости совсем в другом, а именно в том, что на луне тяжесть в шесть раз меньше, чем на земле. Это позволяет вам делать в лунном мире такие высокие и длинные прыжки, каких на земле не сделает ни один гимнаст, и поднимать руками такие большие грузы, какие не сдвинет на земле ни один силач.
      Вы вглядываетесь в лунную почву, и вас поражает её тёмный цвет.
      Лунине кольцевые горн, рассматриваемые вблизи. Из-за отсутствия воздуха на луне тени там очень резки, небо черно, и на нём среди дня видно множество звёзд.
      Вы ожидали, что почва на луне белая, как известь. Но учёные знают, что лунная почва не может быть белой; они исследовали лунный свет и убедились, что поверхность луны должна отбрасывать падающие на неё солнечные лучи примерно так же, как лесная почва. Установлено, что из всего света, падающего на почву луны, она отбрасывает всего только четырнадцатую долю.
      Однако, спросите вы, если луна вовсе не белая, а тёмно-серая, то почему же так ярко светит она ночью? Потому, что она всё же недостаточно черна: ведь четырнадцатую долю света она отбрасывает, посылает к земле. Даже чёрный бархат, залитый солнечными лучами, сиял бы на ночном небе белым светом и казался бы нам ярким по сравнению с темнотою ночи. Вспомните, как ярко выделяется ночью на окраине какой-нибудь почерневший забор, когда его озарит случайно сноп света от автомобильного фонаря.
      - Скоро вы начинаете ощущать, что на луне днём очень жарко. Солнце с луны кажется не больше, чем с земли, но зато оно жжёт здесь непрерывно длинный ряд суток, оттого почва накаляется так, что жар её нестерпим для ног. Скорее спрячьтесь в тень ближайшей горы. Вот где прохладно, даже, пожалуй, чересчур прохладно.
      Сидя в тени, вы оглядываете небо — лунное небо. Вид его так же необычен, как и вид неба с ракетного корабля. При ярком сиянии солнца небо и здесь совершенно черно и в изобилии осыпано звёздами. Наша земля сияет на лунном небе в виде очень яркого круга, поперечник которого раза в четыре больше, чем круг луны на земном небе. И светит земля ярче, чем луна: её атмосфера отбрасывает больше солнечного света, чем тёмная почва луны.
      Но что это? День начинает меркнуть. Неужели солнце заходит? Нет, оно ещё высоко в небе, но прячется позади земли: начинается солнечное затмение на луне. Волшебное зрелище! Земля на небе окружается кроваво-красной каймой: такой вид имеет наша атмосфера, когда она озаряется сзади лучами солнца. Вы достаточно уже остыли от прежнего зноя, более чем достаточно. Вам стало холодно в тени лунной горы. Хочется снова согреться, подвигаться, и вы предпринимаете экскурсию на лунную гору. Подъём очень лёгок — не только потому, что тело ваше теперь вшестеро меньше весит, но и потому, что склон горы не крут. Лунные горы не крутые, — напротив, очень полотне. Кажутся же они с земли в трубу крутыми лишь благодаря тому, что из-за отсутствия воздуха на луне отбрасывают от себя очень резкие тени.
      Вы добрались до гребня горы; дальше идёт спуск в котловину, спуск заметно более крутой. Ваша гора оказывается кольцевой, как и большинство лунных гор.
     
     
      ВОЗВРАЩЕНИЕ
     
      Больше, пожалуй, я не могу ничего рассказать из впечатлений вашей будущей поездки на луну. Описать всё, что вы увидите, когда будете на самом деле бродить по лунной почве, я не в состоянии по очень простой причине: я не знаю этого. Чтобы всё рассказать, надо раньше самому совершить такой перелёт. А так как измышлять я не хочу, то делаю здесь пропуск и перехожу сразу к тому моменту, когда вы собрались в обратный путь на землю.
      Вы тщательно укладываете сделанные вами снимки лунных видов (отправляясь в путь, вы, конечно, захватили с собою фотографический аппарат), а также собранные вами образчики лунной природы. Когда вернётесь домой, вы составите из этого материала «лунную коллекцию», которая украсит собою витрину вашего городского или колхозного музея. Со всем этим драгоценным имуществом, о котором учёные могут сейчас только мечтать, забираетесь вы в каюту небесного корабля, чтобы пуститься в обратное путешествие на родную землю.
      Опять начинается сжигание топлива в ракете, и корабль снимается с места. Он устремляется к небу на этот раз не с той огромной скоростью, с какой покидал землю. Скорость одиннадцать километров в секунду здесь не нужна. При отлёте с луны корабль должен иметь лишь такую скорость, которая могла бы донести его до «перевального пункта», т. е. поднять против слабого притяжения луны всего на сорок тысяч километров. А для этого достаточна скорость двух с половиною километров в секунду. За «перевальным пунктом» корабль вступит в область притяжения земли и начнёт падать на неё. Потому-то достаточно отлететь от луны с такою небольшою скоростью, которая, однако, вдвое больше скорости снаряда самой сильной пушки.
      Когда горение в ракете кончится, т. е. через несколько секунд, вы снова потеряете ваш вес и снова окажетесь в маленьком, но необычайном мире, где ничто ничего не весит. Спустя шесть земных суток вы подлетите к земному шару.
      Остаётся спуститься на землю. Это гораздо хлопотливее, чем спуститься на луну. К земле небесный корабль подлетит с такой огромной скоростью (11 километров в секунду), о какою опасно не только ударяться о почву или о воду, но даже погрузиться в земную атмосферу. Уничтожение этой скорости «контр-паром», т. е. обратным ходом ракетного корабля, потребовало бы чересчур большого расхода горючего. Поэтому пилот прибегает при спуске на землю к довольно сложному манёвру. Он направляет корабль так, чтобы сначала только чуть задеть самую крайнюю, очень разрежённую верхушку земной атмосферы. Этот слабый воздушный тормоз немного уменьшит скорость корабля, и путь ракеты слегка пригнётся к земле. Пилот так рассчитал угол и глубину погружения в атмосферу, что изгиб пути заставит корабль описать вокруг земли широкую петлю, которая снова приведёт ракету в тесное соседство с землёй. На этот раз корабль погрузится уже немного глубже в атмосферу, опишет вторую, менее широкую петлю, в третий раз врежется в воздушную оболочку земли, потом в четвёртый, в пятый, в шестой раз, погружаясь глубже и глубже, всё уменьшая свою скорость. После седьмой петли скорость корабля будет уже настолько мала, что он сможет безопасно соскользнуть (спланировать) на землю, а ещё лучше — на воду.
      Вот каким сложным путём очутитесь вы на родной земле. Перелёт на луну и обратно кончится.
      Так или примерно так будут со временем происходить перелёты на луну и обратно. Если вам доведётся самим совершить подобное путешествие, вспомните тогда о тех тружениках, которые смелым полётом мысли и упорной работой подготовили эту удивительную победу человеческого ума над силами природы.

 

 

От нас: 500 радиоспектаклей (и учебники)
на SD‑карте 64(128)GB —
 ГДЕ?..

Baшa помощь проекту:
занести копеечку —
 КУДА?..

 

На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека


Борис Карлов 2001—3001 гг.