На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека

Технология электрической сварки металлов и сплавов плавлением. Островская, Патон и др. — 1974 г

 

Под ред. акад. Б. Е. Патона

ТЕХНОЛОГИЯ ЭЛЕКТРИЧЕСКОЙ СВАРКИ
МЕТАЛЛОВ И СПЛАВОВ ПЛАВЛЕНИЕМ

*** 1974 ***


DjVu


      В предлагаемой вниманию читателей книге рассмотрен один из наиболее актуальных вопросов сварочной науки и техники — технология электрической сварки металлов и сплавов плавлением.
      В работе над книгой участвовало более тридцати специалистов, что обусловлено широким кругом рассматриваемых вопросов.
      Книгу подготовили сотрудники Института электросварки имени Е. О. Патона АН УССР:
      § 1-1, 1-2, 2-7 —2-8, 3-1—3-4, 5-1—5-6, 6-1, 6-6 и 12-3 канд. техн. наук С. А. Островская;
      § 1-3 — акад. Б. Е. Патон;
      § 2-1 — д-р техн. наук Г. И. Лесков;
      § 2-2 и 3-5 — д-р техн. наук Г. 3. Волошкевич;
      § 2-3 и 3-6 — канд. техн. наук О. К. Назаренко;
      § 2-4 и 3-7 — канд. техн. наук В. П. Гаращук и инж. О. А. Величко;
      § 2-5 — канд. техн. наук В. И. Махненко;
      § 2-6 и 7-3 —член.-корр. АН УССР И. К. Походня и канд. техн. наук И. Р. Явдощин;
      § 2-9, 6-5, 7-1, 7-4 и 7-5 — д-р техн. наук В. В. Под-гаецкий (часть § 7-4 «Флюсы для сварки высоколегированных сталей и сплавов» — акад. АН УССР Б. И. Медовар и канд. техн. наук Д. В. Чекотило;
      § 4-1, 4-4—4-6 — д-р техн. наук А. Е. Аснис;
      § 4-2 и 4-3 — д-р техн. наук А. Е. Аснис и канд. техн. наук С. А. Островская (часть § 4-3 «Определение стойкости металла против перехода в хрупкое состояние» — канд. техн. наук В, В. Шеверницкий);
      § 6-2 и 6-4 — канд. техн. наук С. А. Островская и д-р техн. наук В. В. Подгаецкий;
      § 6-3 и 10-3 — 10-7 — член.-корр. АН УССР А. М. Макара;
      § 6-7 — канд. техн. наук Г. В. Жемчужников, инженеры Э. В. Котенко и А. В. Бабаев;
      § 7-2 — член.-корр. АН УССР И. К. Походня и канд. техн. наук А. М. Суптель;
      § 8-1 и 8-11 — акад. Б. Е. Патон и канд. техн. наук М. Г. Бельфор;
      § 9-1, 9-2, 10-1 и 10-2 — канд. техн. наук С. Л. Ман-дельберг;
      § 9-3 — канд. техн. наук Т. М. Слуцкая;
      § 9-4 — д-р техн. наук Ю. А. Стеренбоген;
      § 10-8—10-11 — акад. АН УССР Б. И. Медовар и канд. техн. наук JI. В, Чекотило;
      § 10-12 — канд. техн. наук — Ю. Н. Готальский;
      § 11-1 —11-8 — доктора техн. наук С. М. Гуревич и Д. М. Рабкин;
      § 12-1 — акад. АН УССР К- К. Хренов;
      § 12-2 — канд. техн. наук — В. Ф. Лапчинский;
      § 13-1—13-5 — канд. техн. наук Ю. А. Юзвенко;
      § 14-1—14-3 — инж. В. А. Цечаль.

 

      Введение
      Сварка — один из наиболее широко распространенных технологических процессов. К сварке относятся собственно сварка, наплавка, сваркопайка, сварка, склеивание, пайка, напыление и некоторые другие операции.
      С помощью сварки соединяют между собой различные металлы, их сплавы, некоторые керамические материалы, пластмассы, стекла и разнородные материалы. Основное применение находит сварка металлов и их сплавов при сооружении новых конструкций, ремонте различных изделий, машин и механизмов, создании двухслойных материалов. Сваривать можно металлы любой толщины. Прочность сварного соединения в большинстве случаев не уступает прочности целого металла.
      Сварку можно выполнять на земле и под водой в любых пространственных положениях. Возможность выполнения сварки в космосе была доказана советскими летчиками-космонавтами Т. С. Шониным и В. Н. Кубасовым. На борту космического корабля «Союз-6» они впервые осуществили сварку коррозионностойкой стали и титанового сплава в условиях космического вакуума и невесомости.
      Соединение при сварке достигается за счет возникновения атомно-молекулярных связей между элементарными частицами соединяемых тел. Сближению атомов мешают неровности поверхностей в местах, где намечено осуществить соединение деталей, и наличие на них загрязнений в виде окислов, органических пленок и адсорбированных газов.
      В зависимости от методов, примененных для устранения причин, мешающих достижению прочного соединения, все существующие разновидности сварки (а их насчитывается около 70) можно отнести к трем основным группам — сварка давлением (сварка в твердом состоянии), сварка плавлением (сварка в жидком состоянии) и сварка плавлением и давлением (сварка в жидкотвердом состоянии).
      При сварке плавлением соединение деталей достигается путем локального расплавления металла свариваемых элементов — основного металла — по кромкам в месте их соприкосновения или основного и дополнительного металлов и смачивания твердого металла жидким. Расплавленный основной или основной и дополнительный металлы самопроизвольно (спонтанно) без приложения внешнего усилия сливаются, образуя общую так называемую сварочную ванну. По мере удаления источника нагрева происходит затвердевание—кристаллизация металла сварочной ванны и формирование шва, соединяющего детали в одно целое. Металл шва при всех видах сварки плавлением имеет литую структуру.
      Для расплавления металла используют мощные источники нагрева. В зависимости от характера источника теплоты различают электрическую и химическую сварку плавлением: при электрической сварке начальным источником теплоты служит электрический ток, при химической в качестве источника теплоты используют экзотермическую реакцию горения газов (газовая сварка) или порошкообразной горючей смеси (термитная сварка).
      В данной книге освещены вопросы, касающиеся только электрической сварки плавлением металлов и их сплавов.
      Впервые мысль о возможности практического применения «электрических искр» для плавления металлов высказал в 1753 г. академик Российской Академии наук Г. Р. Рихман, выполнивший ряд исследований атмосферного электричества. Практической проверке такого мнения способствовало создание итальянским ученым А. Вольта гальванического элемента (вольтова столба). В 1802 г. профессор Санкт-Петербургской военно-хирургической академии В. В. Петров, используя мощный гальванический элемент, открыл явление электрической дуги. Он также указал возможные области ее практического применения. Независимо от В. В. Петрова, но несколько позже (1809 г.), электрическую дугу получил английский физик Г. Деви.
      Для практического осуществления электрической сварки металлов потребовались многие годы совместных усилий физиков и техников, направленных на создание электрических генераторов. Важную роль сыграли открытия и изобретения в области магнетизма и электричества.
      Первые электромагнитные генераторы были созданы в 70-х годах XIX в. До этого имели место лишь отдельные попытки осуществления электрической сварки металлов с помощью гальванических элементов. Так, в 1849 г. американец К. Стэт получил английский патент на соединение металлов с помощью
      электричества. Однако этот патент не был реализован на практике. Глубокая разработка вопросов электрической сварки металлов началась позже.
      В 1882 г. русский изобретатель Н. Н. Бенардос предложил способ прочного соединения и разъединения металлов непосредственным действием электрического тока. Он практически осуществил способы сварки и резки металлов электрической дугой угольным электродом. Ему также принадлежит много других важных изобретений в области сварки (спиральношовные трубы, порошковая проволока и др.). Электрическая дуговая сварка получила дальнейшее развитие в работах Н. Г. Славянова. В способе Н. Г. Славянова (1888 г.) в отличие от способа Н. Н. Бенар-доса металлический стержень одновременно является и электродом, и присадочным металлом. Н. Г. Славянов разработал технологические и металлургические основы электродуговой сварки. Он применил флюс для защиты металла сварочной ванны от воздуха, предложил способы наплавки и горячей сварки чугуна, организовал первый в мире электросварочный цех. Н. Н. Бенардос и Н. Г. Славянов положили начало автоматизации сварочных процессов, создав первые устройства для механизированной подачи электрода в дугу.
      Дальнейшее развитие электрической дуговой сварки несколько замедлилось в связи с конкуренцией газовой сварки кислородноацетиленовым пламенем. В начале XX в. этот способ обеспечивал более высокое качество сварных швов, чем дуговая сварка голым электродом.
      Положение изменилось, когда в 1907 г. шведский инженер О. Кьельберг применил металлические электроды с нанесенным на их поверхность покрытием. Это покрытие предохраняло металл шва от вредного воздействия воздуха (окисления и азотирования) и стабилизировало горение дуги. Применение покрытых электродов обеспечило резкое повышение качества сварных соединений. Ручная электродуговая сварка плавящимся электродом начала широко применяться на заводах США, Англии, Австро-Венгрии и других стран.
      Отсталая промышленность дореволюционной России так и не смогла в должном объеме использовать дуговую сварку. Промышленное применение этого вида сварки в нашей стране началось только после победы Великой Октябрьской социалистической революции. Уже в начале 20-х годов под руководством В. П. Вологдина были изготовлены сварные котлы, а несколько позже — суда и другие ответственные конструкции. В конце первой четверти XX в. ручная дуговая сварка плавящимся электродом стала основным способом сварки в нашей стране и во всем мире.
      Все время развиваясь и совершенствуясь, ручная дуговая сварка не утратила своего ведущего положения и в настоящее время.
      Освоена сварка специальных сталей, цветных и легких металлов и других материалов, и для этих условий достигнута равнопрочность сварного соединения с основным металлом.
      Наряду с внедрением и совершенствованием ручной дуговой сварки во всех странах проведены работы по изысканию новых способов защиты зоны дуги от окружающего воздуха и по механизации основных сварочных операций. Уже в начале 20-х годов в различных странах были созданы специальные механизмы — автоматы для сварки и наплавки плавящимся электродом с наносимыми на их поверхность или вводимыми внутрь стержня специальными веществами или же с окружающей дугу газовой защитой.
      Однако эти автоматы не получили промышленного применения, так как обеспечивали лишь небольшое повышение производительности труда по сравнению с ручной сваркой.
      Новый этап в развитии механизированной дуговой сварки в нашей стране начался в конце 30-х годов, когда на основе идей, выдвинутых еще Н. Г. Славяновым, коллективом Института электросварки АН УССР под руководством академика АН УССР Евгения Оскаровича Патона был разработан новый способ сварки, получивший название — автоматическая сварка под флюсом. В середине 40-х годов сварка под флюсом была применена и для полуавтоматического процесса.
      Сварка под флюсом за счет увеличения мощности сварочной дуги и надежной изоляции плавильного пространства от окружающего воздуха позволяет резко повысить производительность процесса, обеспечить стабильность качества сварного соединения, улучшить условия труда и получить значительную экономию материалов, электроэнергии и средств.
      Высокое качество сварного соединения и равнопрочность его с основным металлом предопределяют применение сварки под флюсом при изготовлении конструкций и аппаратуры, работающих в условиях глубокого холода, высоких температур, сверхвысоких давлений, агрессивных жидких и газовых сред и нейтронного излучения. Способ используют для соединения большинства находящих промышленное применение металлов и сплавов.
      Особенно широко сварка под флюсом применяется в Советском Союзе, который по техническому уровню развития и по глубине научной разработки основ этого способа сварки занимает ведущее положение. Возможности автоматической сварки под флюсом еще далеко не исчерпаны, и,можно ожидать дальнейшего ее развития и совершенствования.
      Способ сварки под флюсом за рубежом впервые появился в США (фирма Линде). Пути развития этого способа в зарубежных странах несколько отличались от отечественных. Различие в основном заключалось в конструкциях сварочных установок и в применяемых сварочных материалах.
      В конце 40-х годов получил промышленное применение способ дуговой сварки в защитных газах. Газ для защиты зоны сварки впервые использовал американский ученый А. Александер еще в 1928 г. Однако в те годы этот способ сварки не нашел серьезного промышленного применения из-за сложности получения защитных газов. Положение изменилось после того как для защиты были использованы пригодные для массового применения газы (гелий и аргон в США, углекислый газ в СССР) и различные смеси газов.
      Сварку неплавящимся (угольным) электродом в углекислом газе впервые осуществил Н. Г. Остапенко. Затем усилиями коллективов ЦНИИТМАШа, Института электросварки им. Е. О. Па-тона и ряда промышленных предприятий был разработан способ дуговой сварки в углекислом газе плавящимся электродом.
      Использование дешевых защитных газов, улучшение качества сварки и повышение производительности процесса обеспечили широкое применение этого способа главным образом при полуавтоматической сварке различных конструкций. Объем применения полуавтоматической сварки в защитных газах из года в год возрастает. Ее широко используют вместо ручной сварки покрытыми электродами и полуавтоматической сварки под флюсом. Для полуавтоматической сварки находят применение также порошковая и активированная проволоки, не требующие дополнительной защиты. Интенсивные работы ведутся по исследованию и промышленному применению разновидности дугового процесса — так называемой сварки сжатой (плазменной) дугой.
      Серьезным достижением отечественной сварочной техники явилась разработка в 1949 г. принципиально нового вида электрической сварки плавлением, получившего название электро-шлаковой сварки. Электрошлаковая сварка разработана сотрудниками Института электросварки им. Е. О Патона в содружестве с работниками заводов тяжелого машиностроения. Разработка этого вида сварки позволила успешно решить весьма важные для дальнейшего развития промышленности вопросы качественной и производительной сварки металла практически неограниченной толщины и механизации сварки вертикальных швов.
      На основе электрошлакового процесса в Советском Союзе создан новый способ рафинирования металла, получивший название электрошлакового переплава.
      Развитие сварочной техники неразрывно связано с изысканием новых источников теплоты для плавления металла. Одним из таких источников является концентрированный поток электронов в вакууме, на основе которого в конце 50-х годов французскими учеными был создан новый вид сварки, получивший название электроннолучевого процесса. Электроннолучевая сварка находит достаточно широкое практическое применение при соединении тугоплавких химических активных металлов и сплавов и ряда специальных сталей.
      В последнее десятилетие для сварки начали применять оптические квантовые генераторы — лазеры. В ближайшие годы можно ожидать дальнейших серьезных успехов в развитии и промышленном применении лучевых сварочных процессов.
      Электрическая сварка плавлением достигла высокого уровня развития и стала ведущим технологическим процессом, позволяющим создавать рациональные конструкции для всех без исключения отраслей промышленности из любых практически применяющихся металлов и сплавов различной толщины. Технология электрической сварки плавлением строится на серьезной научной основе, использующей и обобщающей огромный опыт ученых, работников производства и научных коллективов — представителей различных стран и различных научных школ и направлений.
      Большой вклад в развитие научных основ технологии электрической сварки металлов и сплавов плавлением внесли советские ученые в области сварки. К ним принадлежат созданный Е. О. Патоном коллектив Института электросварки им. Е. О. Па-тона, коллективы: МВТУ им. Н. Э. Баумана, ИМЕТа им. А. А. Байкова, ЦНИИТМАШа, ВНИИАВТОГЕНМАШа, ленинградская школа сварщиков, а также многочисленные кафедры сварки технических вузов страны.
      Значительные успехи, достигнутые в развитии электрической сварки плавлением в нашей стране, стали возможными благодаря огромному вниманию, которое Коммунистическая партия и Советское правительство уделяли и уделяют этому вопросу.

 

 

 

От нас: 500 радиоспектаклей (и учебники)
на SD‑карте 64(128)GB —
 ГДЕ?..

Baшa помощь проекту:
занести копеечку —
 КУДА?..

 

На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека


Борис Карлов 2001—3001 гг.