НА ГЛАВНУЮТЕКСТЫ КНИГ БКАУДИОКНИГИ БКПОЛИТ-ИНФОСОВЕТСКИЕ УЧЕБНИКИЗА СТРАНИЦАМИ УЧЕБНИКАФОТО-ПИТЕРНАСТРОИ СЫТИНАРАДИОСПЕКТАКЛИКНИЖНАЯ ИЛЛЮСТРАЦИЯ

Друзьям и любителям астрономии. Глазенап С. П. — 1936 г.

Профессор Сергей Павлович Глазенап
Почетный член Академии Наук СССР

Друзьям и любителям астрономии

*** 1936 ***


PDF

 ОГЛАВЛЕНИЕ
 
 Введение
 Глава I. Звездное небо
 Глава II. Координаты небесных светил
 Глава III. Пособия при наблюдениях неба
 1. Звездные карты и небесный глобус (29); 2. Бинокль в.астрономических наблюдениях (32)
 
 Глава IV. Закон всемирного тяготения
 1. Законы Кеплера (36). 2. Закон Ньютона (39).
 
 Глава V. Созвездия
 I. Большая Медведица (46). 2. Малая Медведица (52). 3. Дракон (57). 4. Цефей (60). 5. Кассиопея (61). 6. Андромеда (64). 7. Персей (67). 8. Телец (75). 9. Близнецы (82). 10. Орион (84).
 II. Большой Пес (86), 12. Рак (89). 13. Волосы Вероники (92). 14. Северная Корона (93) 15. Геркулес (94). 16. Лира (95). 17.
 Орел (101). 18. Стрелец (101). 19. Лебедь (102).
 
 Глава VI. Млечный путь
 Глава VII Кометы
 1. Замечательные кометы: Большая комета 1807 г. (111). Большая комета 1811 г. (112). Большая комета Донати 1858 г. (114). Комета Биелы (115). Комета Морхауза 1908 г. (120), Комета Галлея (121). Комета Швассмана-Вахмана (124). 2. Поиски комет (126). 3. Рисование хвостов комет. Оценки яркости (133).
 
 Глава VIII. Падающие звезды и болиды
 1. Полет падающих звезд (137). 2. Величина падающих звезд
 (141). 3. Метеоры и атмосфера (144). 4. Радианты падающих звезд (146). 5. Движение падающих звезд в небесном пространстве
 (150). 6. Падающие звезды и кометы (152). 7. Как наблюдать падающие звезды (154). 8. Болиды (167).
 Таблицы: I) Главнейшие радианты метеорных потоков (156). II) Малые потоки (158). III) Главнейшие кометные радианты (164).
 
 Глава IX. Небесные камни, или метеориты
 Глава X. Переменные звезды.
 1. Изучение переменных звезд. 2. Правила наблюдений переменных звезд (184). 3. Некоторые переменные эвезды и их звезды сравнения. А. Затменные переменные: Альголь (Персея) (189). Тельца (191). Весов (191). Лиры (192) Геркулеса (193). Кассиопеи (193). Б. Цефеиды: Орла (195). Цефея (195). Лисички (198). Лебедя (198). Лиры (198). Долгопериодические переменные типа Кита: Кита (Мира) (200). Лебедя (202). Г. Полуправильные переменные звеэды: а Ориона (204).
 Цефея (204). Пегаса (205). Лиры (205). Геркулеса (206). Лебедя (206). Рака (206).
 4. Обработка наблюдений над переменными звездами (207).
 Таблица IV) Список переменных звезд в максимуме ярче 6,0 звездной величины до — 30° склонения.
 
 Глава XI. Новые звезды
 1. Звездное, истинное и среднее время (223). 2. Поясное время (232). 3. Декретное время (234). 4. Радиосигналы точного времени (235). 5. Солнечное кольцо (238).
 
 Таблицы: V) Для превращения среднего времени в звездное (227), VI) Для превращения звездного времени в среднее (23 1 ).
 VII) Среднее время в истинную полночь (246), VIII) 3вездное время в среднюю Гринвичскую полночь (248), IX) Таблица мест Союза ССР по поясам времени (250).

PEKЛAMA Заказать почтой 500 советских радиоспектаклей на 9-ти DVD. Подробности...

Выставлен на продажу домен mp3-kniga.ru
Обращаться: r01.ru (аукцион доменов)



 



 Издание третье дополненное и переработанное под редакцией проф. В. А. Воронцова-Вельяминова

      В данном III издании, в значительной части переработанном, автор передает свой опыт молодым любителям астрономии, оказывая им существенную помощь в их самостоятельной исследовательской работе. Особое внимание уделено автором истории и современному состоянию астрономии.
      Книга профессора С. П. Глазенапа «Друзьям и любителям астрономии» в дореволюционной России выдержала два издания — в 1904 и в 1909 гг., из которых первое было премировано б. Русским астрономическим обществом. Такой успех был обусловлен не только скудостью
      научно-популярной литературы при царизме, но, конечно, и объективными достоинствами книги. Проф. С. П. Глазенап является одним из первых блестящих популяризаторов астрономии в России, и его перу принадлежит множество высоколитературных и увлекательных книг и стате й , побудивших многих и многих сделаться друзьями и любителями астрономии, или даже специалистами-учеными в этой области. Еще ценнее, однако, тот факт, что С. П. Глазенап является первым русским ученым-специалистом, красноречиво и настойчиво призывавшим любителей перейти от пассивного созерцания природы к активному ее изучению, к самостоятельному научному творчеству, к посильному строительству здания науки. Целый ряд руководящих практических и методических указаний проф. С. П. Глазенапа воспитал многочисленные кадры любителей — исследователей переменных и падающих звезд и многие из современных, широко известных ученых воспитались на первых изданиях книги «Друзьям и любителям астрономии».
      Советская власть, сделав науку достоянием трудящихся, не только пробудила в широких массах жгучую жажду знания, но и открыла простор для творческой инициативы, вызвала бурный рост любительских обществ и кружков. За годы после Октябрьской революции советские любители астрономии вышли на одно из первых мест в мире по обилию и. по значению производимых ими наблюдений и исследований. К голосу советских наблюдателей переменных и падающих звезд чутко прислушиваются и в зарубежном научном мире.
      Между тем, создавшаяся до революции отсталость в издании руководств и пособий для разрастающейся сети любителей науки о звездном небе еще далеко не изжита выпусками советской литературы, тем более, что благодаря растущей тяге к знанию книги зачастую расходятся ранее чем об их выходе узнают все заинтересованные лица. Принимая во внимание эти потребности, учитывая блестящий след, вставленный книгой проф. С П. Глазенапа в истории развития научного любительства в России и идя навстречу пожеланиям, высказанным Всесоюзным астрономо-геодезическим обществом, редакция научно-популярной и юношеской литературы предприняла третье издание настоящей книги.
      Со времени последнего, второго, издания книги протекло более четверти столетия, в течение которого возникли совершенно новые отрасли науки — астрофизики, и большинство взглядов на строение вселенной и на физическую природу небесных тел претерпело большое изменение. Но иной стала не только наука, которой посвящена книга «Друзьям и любителям астрономии», изменился и ее читатель. На смену любителям астрономии царской России, — в большинстве своем интеллигентов или привилегированных, учащихся, зачастую людей идеалистически и мечтательно настроенных, — пришел новый читатель. По большей части — это рабочая учащаяся молодежь, материалистически относящаяся к природе, выросшая в условиях нового быта и коллективного труда.
      В виду этого прекрасную книгу профессора СП. Глазенапа пришлось коренным образом переработать и дополнить. Много дополнений было написано самим проф. С. П. Глазенапом и им же при участии проф. П. М. Горшкова и Д. Будницкого была выполнена некоторая доля предварительного редактирования нового издания. Большой объем работы потребовал, однако, привлечения ряда астрономов-специалистов для составления дополнений по соответствующим областям науки, астрономов, близко знакомых с нуждами и запросами любителей. В то же время для сохранения единства стиля, языка и равновесия в размере дополнений, редактирование
      всей работы в целом было поручено одному ответственному лицу. Перечислить изменения, внесенные в книгу по сравнению со вторым изданием, представляется крайне затруднительным, и желающие сами могут попытаться взять на себя этот труд. Укажем, однако, что поскольку книга предназначена, главным образом, как практическое руководство для лиц, не располагающих телескопом, при переработке главы «Созвездия» было бы излишне пополнять ее всеми многочисленными данными «телескопической астрономии», полученными за последние 30 лет. Поэтому в данной главе добавлены краткие описания только наиболее типичных объектов, изучение которых открыло в астрономии принципиально новые перспективы.
      В главах о кометах, падающих и переменных звездах большое участие в переработке приняли соответственно: С. К. Всехсвятский, И. С. Астапович и П. П. Паренаго.
     
      Авторство сотрудников по основным дополнениям распределяется следующим образом:
      Проф. Б. П. Герасимович (директор Пулковской обсерватории) 26 — 28
      Проф Г. К Неуймин (Симеизская обсерватория). 87 — 89
      Проф К Д. Покровский (директор Одесской обсерватории) 13, 188 — 193
      П. П. Паренаго (старший сотрудник Астрономического Института им. Штернберга в Москве и зав. отделом переменных звезд ВАГО) 194, 198, 199, 201 — 203, 206, 212 — 216
      И. С. Астапович (старший сотрудник Астрономического Института им. Штернберга в Москве)144, 145, 149, 156 — 159, 168, 174 — 176, 181
      Проф. С. К. Всехсвятский (Ленинград). 120 — 125, 132 — 134
      Проф. Б. А. Боронцов-Бельяминов (Москва) 9, 12, 29, 30, 32, 37, 38, 65, 105 — 107, 218, 219
     
      Кроме того, Б. А. Воронцовым-Вельяминовым написана большая часть мелких дополнений в разных главах, особенно в главе « Созвездия », произведена вся общая и вся окончательная переработка к редакция текста книги и дополнений, включая наблюдение за ее печатанием.
      Большая часть перечисленных выше лиц в той или иной мере является учениками С. П. Глазенапа.
      Необходимо пожелать, чтобы Сергей Павлович Глазенап, являющийся старейшим из современных советских астрономов (он родился в 1848 г) и такой отзывчивый к запросам общественности, еще долго и успешно продолжал свою полезную научную и популяризаторскую работу, воспитывающую молодые кадры советских ученых.
      Уже тысячи лет назад с вершин египетских пирамид и с высот халдейских храмов следили жрецы за течением небесных светил. Немало научных сведений добыли эти служители культа за время своих тысячелетних наблюдений, но эти сведения они хранили в тайне от простого народа, пользуясь полученными знаниями для упрочнения своего авторитета и для большего еще угнетения трудящихся масс.
      Тысячелетия прошли, и в Советском союзе власть и наука стали достоянием трудящихся. Сотни тысяч рабочих и крестьян вошли в двери учебных, заведений и, овладевая наукой, выковывают свое материалистическое мировоззрение и применяют полученные знания к построению социализма в нашей великой стране.
      Изучение необъятной вселенной, окружающей нашу Землю, играет огромную роль в борьбе с религиозными предрассудками, оставшимися еще кое-где в наследство от старого прошлого. Знакомство с явлениями, происходящими в безднах мирового пространства, расширяет кругозор человека, помогает ему материалистически смотреть на все происходящее в природе.
      Ясная, тихая ночь с многочисленными светилами чарует наши взоры. Сколько удовольствия мы испытываем, любуясь небесными светилами! Оно удваивается, если в нашем распоряжении имеется хорошая астрономическая труба и если мы можем рассматривать подробности небесных светил: какие чувства рождаются тогда в душе наблюдателя, какие стремления возникают в его уме! Но удовольствие, испытываемое наблюдателем, увеличится во много раз, если он не ограничится одним только созерцанием звездного неба, а станет производить систематические наблюдения и извлекать из них результаты.
      С понятием «производить наблюдения» обыкновенно связывается представление об обсерватории с высокой башней, обставленной ценными инструментами. Это мнение только отчасти справедливо. Действительно, если вы изберете задачею изучение химического состава светил или определение скорости их движений, то без хорошего прибора, называемого спектрографом, с превосходным часовым механизмом, не обойтись; если вы пожелаете производить измерения положений спутников относительно их планет, или измерять двойные звезды, то без телескопа с микрометром вы ничего не поделаете; если, наконец, вы поставите себе целью составлять точнейшие звездные каталоги, то без особо устроенных приборов и хорошей обсерватории ничего нельзя сделать. Но наука не ограничивается одними этими вопросами, а вселенная со своими небесными светилами и явлениями безгранична: она не имеет предела ни в протяжении, ни в числе светил, ни в разнообразии; существует множество других одинаково важных задач, решение которых доступно всем и каждому без особых приборов и дорогих приспособлений, а также без знания высшей математики.
      Мы далеки от желания доказывать ненадобность математики: успех астрономии зависит от знания математики и от умения применять ее к исследованию небесных явлений, но мы хотим обратить внимание на то, что и незнающий математики может производить ценные наблюдения и обогащать ими современную науку.
      И в наше время, богатое совершенными приборами и хорошо оборудованными обсерваториями, нередко астроном с самыми скудными средствами производит цепные наблюдения и извлекает из них замечательные выводы.
      История науки полна примеров того, как рядовые труженики, не получившие специального научного образования, благодаря упорному труду, воле и систематичности своих наблюдений, обогатили науку ценнейшими открытиями или фактическими данными из области астрономии.
      Мы не будем приводить примеров того, когда такими любителями-астрономами явились люди, обладавшие в условиях капитализма достаточными средствами и на эти средства, а отчасти и личным трудом, построившие новые большие телескопы или обсерватории, превосходящие по качеству или по размерам то, что было построено до них государственными учреждениями. Мы приведем в пример самых обыкновенных людей, не обладавших ни денежными средствами, ни титулами, но оставившими большой след в истории науки. Мы укажем на немецкого почтового чиновника Хенке в Дрездене, наблюдавшего в часы досуга небесные светила и открывшего несколько малых планет, обращающихся вокруг Солнца между орбитами Юпитера и Марса. Мы вспомним о часовых дел мастере Кувье-Гравье, жившем в окрестностях Парижа: в течение многих лет он считал число падающих звезд и тем доставил науке неоценимый материал для изучения природы этих светил. Ни тот, ни другой не имели специальной математической подготовки и не владели дорогими приборами. Мы упомянем также о враче Ольберсе из Бремена; ему астрономы обязаны открытием нескольких комет и малых планет, а также развитием и изложением простейшего способа определения путей комет по трем наблюдениям их положения на небе. Мы обратим внимание читателя на скромного труженика науки, доктора-практика Ендржеевича в Плонске, измерявшего но ночам двойные звезды крошечным прибором.
      Среди известнейших открывателей комет, имена которых сохранились за этими кометами, можно назвать Свифта (жестяника по профессии) и Темпеля (гравера, крестьянина по происхождению).
      Крупнейший ученый XIX — XX столетий Барнард начал свои исследования еще в качестве уличного фотографа. Известный астроном В. К. Бонд, так же как и исследователь падающих звезд Кювье-Гравье, был вначале своей научной карьеры обыкновенным часовщиком. Известный исследователь планет Шретер был служащим ведомства юстиции.
      Открытие новой звезды в созвездии Живописца в 1925 году было произведено почтовым служащим Ватсоном; открытие новой звезды в Пресее в 1901 году — учеником средней школы Борисяком.
      Тысячи имен любителей астрономии хорошо известны науке, как имена ее активных сотрудников, но истории неизвестны в большинстве случаев их точные профессии и их социальное положение.
      В ряде стран образовались общества и кружки друзей и любителей астрономии, ставящие своей целью не только ознакомление с наукой, но и систематическое участие в ее развитии преимущественно при помощи наблюдений Солнца, падающих и переменных звезд и т. п.
      Каждый участвует в этих наблюдениях постольку, поскольку ему позволяют время, способности или знания.
      Октябрьская революция, открыв дорогу творческим способностям пролетариата, вызвала в массах огромный интерес к науке вообще и к астрономии в частности.
      В настоящее время все значительные кружки и общества друзей науки о небе объединены Всесоюзным астрономо-геоде-зическим обществом, правление которого находится при Московском планетарии. Отделения этого общества находятся в Москве, в Горьком, в Харькове, в Одессе, в Чите и других городах. Это общество разрабатывает инструкции к научным наблюдениям различных явлений, проводит консультации и издает различные пособия для любителей астрономии. Более ценные наблюдения любителей и их результаты печатаются в периодически издаваемых «Бюллетене коллектива наблюдателей ВАГО» и в бюллетене «Переменные звезды». Эти издания рассылаются по СССР и за гра ницу, где было отмечено бурное развитие научно-любительских наблюдений в стране Советов.
      Особенностью любительских наблюдений в СССР является то, что многие из них организуются коллективно, с вовлечением многих лиц. Этот метод исследования позволяет разрешать задачи, непосильные для отдельных любителей и ученых, и, что очень важно, позволяет изучить причины и характер различных ошибок, неизбежных при производстве наблюдений.
      Для того, чтобы наблюдения любителя получили научную ценность, необходимо хорошо ознакомиться со звездным небом и развить в себе умение точно, критически и аккуратно описывать наблюдаемые небесные явления. Необходимо наметить себе хотя бы небольшой план работы, согласовав его как со своими личными возможностями, так и с климатическими условиями и особенностями местности. При наблюдениях необходимо стремиться к их максимальной тщательности и систематичности. Случайные отрывочные наблюдения во многих случаях имеют меньше цены, чем наблюдения менее точные, но производившиеся каждую ясную ночь в течение продолжительного времени. Начинать следует с наиболее простых наблюдений и не смущаться, если вначале их результаты будут скудны. Астрономические наблюдения, как и всякое другое дело, требуют приобретения некоторого навыка, требуют упражнений.
      Настоящая книга рассчитана на любителя, не располагающего телескопом. Маленький телескоп позволяет, конечно, лучше ознакомиться с различными небесными светилами и явлениями, на них происходящими, но научные наблюдения, доступные при помощи маленького телескопа, немногим обширнее, чем научные наблюдения, производимые при помощи хорошего призматического бинокля.
      Считаем необходимым заметить, что при описании созвездий мы в некоторых случаях описали телескопические светила. Да извинит нас снисходительно читатель! Сказать правду, мы увлеклись дивным строением некоторых миров вселенной, видимых только в телескоп, и в нескольких строках передали о них нашему читателю.
      Читатели найдут в книге различные указания на необходимые приборы и пособия. Здесь укажем лишь, что для различных справок очень полезно иметь «Астрономический календарь», издаваемый в г. Горьком. В его постоянной части содержатся различные постоянные цифровые данные, подробные инструкции к наблюдениям и т. п. Переменная часть этого календаря издается на каждый год отдельно, и там приводятся те данные, которые от года к году меняются, например положение планет среди созвездий, дни новолуний и полнолуний, затмения Солнца и Луны и т. п.
     
     
      Глава I
      ЗВЕЗДНОЕ НЕБО
     
      Читатель, желающий изучать астрономию, должен знать звезды и уметь их разыскивать. Как бы совершенна ни была книга, избранная для изучения звезд, она все-таки окажется недостаточной: звезды и созвездия могут быть изучаемы только постоянными наблюдениями при помощи звездного атласа. Жители юга, где количество ясных ночей больше, чем на севере, где летом ночи темные, а не белые, знают звездное небо несравненно лучше жителей севера. На севере летние белые ночи, с одной стороны, и морозные зимние, с другой, служат большой помехой для изучения звездного неба; в распоряжении северных наблюдателей остаются только весенние и осенние ночи.
      Жители юга уже в глубокой древности были знатоками звездного неба и некоторых небесных явлений. Колыбелью астрономии явился юг, а не север. Тихие, теплые и ясные ночи юга иногда в течение целых месяцев позволяют любоваться чудными звездами и изучать их относительное положение. Северное же небо бывает сплошь покрыто тучами по целым месяцам и лишает возможности производить наблюдения. Поэтому каждый любитель астрономии, живущий на севере, должен дорожить ясными вечерами и пользоваться ими для изучения звездного неба. Хотя каждый наблюдатель сумеет приспособиться к местным условиям при изучении звездного неба, но следующие общие указания могут быть весьма полезны.
      Всего лучше выбрать место с открытым горизонтом, где бы ничто не мешало наблюдениям, и заняться сначала изучением неба, его повторными осмотрами и сравнениями со звездною картою, а затем — наблюдениями. Первый же осмотр звездного неба в ясную, безлунную ночь приведет в восторг наблюдателя: он будет поражен величием звезд и торжественною красотою неба. Он невольно вспомнит, что те звезды, которыми он восхищается в настоящую минуту, составляли предмет восхищения нескольких тысячелетий тому назад, когда человек впервые обратил свои взоры на небо, и что с этого первого знаменательного для человека вечера звезды не перестают быть предметом восхищения, наблюдения и изучения.
      Небесный свод усеян звездами различного блеска; самые блестящие из них прежде всего останавливают наше внимание, и с них мы начинаем осмотр неба; относительно них мы запоминаем расположение более слабых звезд.
      Все звезды распределяются на группы, называемые со -звездиями; это распределение произведено в глубочайшей древности. Каждому созвездию давалось название легендарного героя или животного; следует, однако, заметить, что только в исключительных случаях звезды своим расположением напоминают тот предмет, которым созвездие называлось. До нас не дошло никаких исторических сведений о времени, когда небо впервые было разделено на созвездия и каким образом происходила группировка звезд. Среди созвездий особое значение имеют двенадцать так называемых зодиакальных созвездий. По этим созвездиям в течение года перемещается Солнце, и когда оно находится в одном из них, то в полночь на юге видно созвездие прямо ему противоположное. Переход Солнца из одного созвездия в другое знаменует наступление новой поры года, новых условий человеческого труда, связанного с природой. Поэтому в седой древности многим зодиакальным созвездиям были даны названия, характеризующие соответствующее время года. Когда на юге, в долинах Северной Африки и Месопотамии, где зародилась астрономия, наступал дождливый период и происходили разливы рек, Солнце находилось в определенной области неба, и звезды этой области были объединены в созвездие под названием Водолея. При переходе Солнца в следующее созвездие вода спадала, и в затонах наступал обильный улов рыбы, отчего соответствующее созвездие назвали Рыбами. Также и летом во время жатвы решили, что Солнце находится в созвездии Девы, изображавшейся с серпом и колосом хлеба в руках. После окончания полевых работ оставалось лишь взвесить урожай, и потому Солнце считалось находившимся в созвездии Весов, которыми взвешивают урожай. Наступала пора охоты, и, вероятно, в связи с нею, были помещены на небо созвездия Стрельца и зверей: Льва, Рыси, Лисички, Медведицы и т. п.
      Названия других созвездий, как, например, Персей, Кассиопея, Цефей, Андромеда, Геркулес, Дракон и проч., относятся, очевидно, к героическим легендам древних народов.
      С развитием мореплавания, когда человек решил отплыть от берегов материка в открытый океан, и когда он, перейдя земной экватор, вступил в южное полушарие, перед ним открылись новые звездные красоты. Пораженные величием океана и красотами южного неба, первые мореплаватели выделили в южном небе обширнейшую группу звезд в отдельное созвездие и назвали его Кораблем. Затем, при более частых посещениях южного полушария, южное небо было разделено на созвездия, которые названы предметами современной цивилизации: Секстан, Типографский
      Станок, Электрическая Машина, Воздушный Насос и т. д.
      Астроном Гульд, в бытность директором Кордобской обсерватории в Аргентине с 1870 по 1880 г., уточнил их и нанес на звездную карту, составив каталог звезд каждого созвездия.
      При феодальном строе общества многие цари и князья содержали при своих дворах ученых астрономов, которым волей или неволей приходилось угождать своим хозяевам.
      Некоторые из астрономов умудрились поэтому поместить на небе, среди древних созвездий, границы которых тогда еще не были уточнены, новые созвездия, названные ими в угоду своим властителям. Так, например, появились созвездия: Щит Собес-ского (короля Польши), Бык Понятовского, Жезл короля Фридриха и т. п. Некоторые из этих дополнительных созвездий удержались и до настоящего времени, но большая их часть забыта, а свободные места отнесены к соседним созвездиям, причем границы последних были несколько изменены, а самые созвездия увеличены.
      В настоящее время все небо разделено на 88 созвездий, причем обширное созвездие Корабля (Argo) принято считать за четыре созвездия: Киль, Корма, Парус и Компас. Вот список этих созвездий, в котором, кроме русских, приведены международные названия их на латинском языке.
     
      Все звезды, видимые невооруженным глазом, делятся на величины или классы, в зависимости от кажущегося их блеска; самые яркие.звезды причисляются к первому классу и называются звездами пер -вой величины; самые же слабые — к шестому и называются звездами шестой величины. ' Звезды промежуточного блеска причисляются ко второму, третьему, четвертому и пятому классам. Телескопические (т. е. видимые только в телескоп) звезды, подобно блестящим, делятся на классы; самые яркие из них причисляются к седьмому классу, следующие затем к восьмому и т. д. Новейшие исследования привели к, заключению, что отношение блеска двух смежных классов есть величина «постоянная, т. е. блеск звезд первой величины во столько раз больше блеска звезд второй величины, во сколько этот последний больше блеска звезд третьей величины и т. д.
      Изложенный закон может быть выражен следующей геометрической прогрессией, знаменатель отношения которой равен:
      где hi, Кя, Кз и т. д. означают блеск звезд шести классов. Из пропорции (1) мы получаем:
     
      Подставляя его в последние формулы, мы приходим к заключению, что если блеск звезд первой величины принять за единицу, то блеск звезд последующих классов будет приблизительно равен:
     
      Из чисел этой таблицы мы выводим, что каждая звезда шестой величины доставляет нашему глазу всего одну сотую блеска звезды первой величины. Мы воспользуемся этими выводами при изучении переменных звезд, этим пользуются также для определения границ видимости звезд в данный телескоп.
      Из опыта мы знаем, что если в точке S находится источник света, то на расстоянии Rj на единицу площади А (рис. 3) упадет некоторое количество света; на расстоянии R 2 в два раза большем то же количество света упадет на площадь в четыре раза большую,
      и, следовательно, на каждую единицу площади В, равную А, упадет в четыре раза меньше света. Если поэтому один наблюдатель будет в два раза дальше, чем другой, то звезда будет казаться наиболее удаленному наблюдателю в четыре раза слабее, т. е ее блеск уменьшится ровно во столько, во сколько увеличился квадрат расстояния. С другой стороны, из того же закона следует, что если две звезды, имеющие в действительности одинаковый блеск, находятся на различных расстояниях от наблюдателя, — например, одна звезда в два раза дальше другой, и обе кажутся одинакового блеска, — то в действительности отдаленная в четыре раза ярче ближайшей. Мы обобщаем этот закон для всевозможных расстояний и говорим, что видимый блеск звезд изменяется обратно пропорционально квадратам расстояния до них. Упоминаемые в этих расчетах слова «звездная величина» ничего общего с истинными линейными размерами звезд не имеют. Звездная величина определяет собою некоторое условное понятие о видимом блеске звезд; наиболее ярким звездам соответствует наименьшее числовое значение величины 1, а слабейшим звездам — наибольшее числовое значение величины 6.
      В глубочайшей древности блестящие звезды названы были собственными именами; в библии упоминается об Арктуре, в созвездии Боота. Главные звезды Близнецов были названы Кастором и Поллуксом в древнегреческое время. Но большинство названий дано в позднейшие времена, и в особенности во время владычества арабов, например: Альдебаран (Аль-Дебаран), Аль-голь (Эль-Гуль) и другие.
      В семнадцатом столетии астроном Байер в своем сочинении «Uranometria», вышедшем в 1601 г., предложил особый способ названия звезд: он обозначил блестящие звезды каждого созвездия буквами греческого алфавита, назвав главную или самую яркую звезду буквою а, вторую по яркости — буквою в и т. д. в порядке алфавита, в последовательности яркости звезд. При таком способе обозначения каждая яркая звезда называлась греческою буквою и именем созвездия, в котором она находилась; например, Кастор — а Близнецов, Поллукс в Близнецов, Арктур — а Боота и т. д. Способ Байера не последователен в некоторых случаях; например, в созвездии Близнецов (Gemini самая яркая звезда — Поллукс, а между тем она обозначена второю буквою алфавита — в; второй же по блеску звездой является Кастор, обозначенный первою буквою — а. В созвездии Орла (Aquila) в является не второю по блеску звездою, как бы следовало, судя по названию (в — вторая буква алфавита), а восьмою. Астроном Флемстид, будучи первым директором Гри-ничской обсерватории (около Лондона) с 1666 по 1715 г., составил роспись (каталог) большинства звезд, видимых невооруженным глазом, и обозначил их арабскими цифрами в известной последовательности. Этот способ имеет то преимущество, что может быть распространен без перерыва на все звезды данного созвездия. Цифры Флемстида употребляются иногда наряду с греческими буквами Байера.
      В позднейшее время Боде, Аргеландер и Хейс составили свои каталоги звезд; они старались устранить неточности в каталога Байера и дали некоторым звездам свои обозначения.
      Вследствие некоторых разногласий в различных каталогах, необходимо при упоминании о слабой звезде, видимой невооруженным глазом, дать, кроме одного из ее обозначений, еще и положение ее на небе в принятых координатах, о чем сказано в следующей главе. Для специалиста астронома, собственно, только и необходимо знать положение данной звезды на небе. При таком простом, но точном и безошибочном обозначении звезд, вполне устраняется необходимость в названии звезд собственными именами или отдельными буквами.
     
      Глава II
      КООРДИНАТЫ НЕБЕСНЫХ СВЕТИЛ
     
      Положение светил определяется, подобно положению точек на поверхности земли, величинами, называемыми координатами. При рассматривании звездного неба у наблюдателя создается впечатление, что все звезды находятся от него на одинаковом, хотя и неопределенном, расстоянии. Наблюдателю кажется, что он находится в центре шара или сферы неопределенного радиуса, на которой расположены все небесные светила. Эта сфера носит название небесной сферы, благодаря вращению Земли вокруг оси, наблюдателю кажется, что вращается вокруг оси небесная сфера, и за сутки делает один полный оборот. Понятно, что ось вращения небесной сферы параллельна оси вращения Земли.
      Горизонт делит небесную сферу на две половины — видимую, находящуюся над горизонтом, и невидимую, находящуюся под горизонтом. Плоскость горизонта, как плоскость касательная к земной поверхности в месте наблюдения, вращается в пространстве вместе с Землей и наблюдателем на ней. С другой стороны, положение горизонта зависит, очевидно, от положения наблюдателя на Земле. Таким образом, между Землей и небесной сферой можно установить определенное соотношение. Вообразим, что через центр Земли проведена плоскость, совпадающая с ее экватором; продолжим ее мысленно до пересечения с небесною сферою, центр которой также совпадает с центром Земли. Рассматриваемая плоскость пересечет небесную сферу по большому кругу, называемому небесным экватором. Продолжим затем ось Земли в обе стороны — на север и юг — до пересечения с небесною сферою: мы получим две диаметрально противоположные точки, называемые полюсами мира; из них один будет северный, а другой — южный. Небесный экватор, очевидно, отстоит от обоих полюсов на 90°. Подобно тому, как мы проводим на поверхности Земли земные меридианы от одного полюса до другого, так же точно и на небесной сфере мы проводим линии, подобные земным меридианам от одного полюса мира до другого.
      Мы можем вообразить, что все светила находятся на небесной сфере: на ней каждой звезде соответствует точка, получаемая от пересечения линии, соединяющей рассматриваемую звезду с центром Земли или с глазом наблюдателя, — что совершенно безразлично в виду малых размеров Земли относительно безграничной вселенной.
      Плоскость земного меридиана можно продолжать до пересечения ее с небесной сферой по кругу, называемому небесным
      меридианом. Когда наблюдатель вращается вместе с Землей, то вместе с ним вращается и плоскости меридиана, проходящая последовательно через разные части небесной сферы. Так как нам кажется, что вращаемся не мы, а окружающее нас небо, то можно сказать, что в течение суток все точки небесной сферы при ее вращении последовательно проходят через меридианы (кульминируют).
      Положение некоторой звезды А (рис. 4) определится следующим образом: через оба полюса и звезду А проводим большой круг РА В, называемый кругом склонения, он пересекает небесный экватор в точке В. Дуга А В называется склонением звезды А. Склонение, очевидно, соответствует географической широте места при определении его положения на поверхности Земли.
      Подобно географическим широтам земных точек, склонение бывает северное, когда оно считается от экватора к северному полюсу, и
      южное, когда оно считается к южному полюсу. Северные склонения считаются за положительные, а южные — за отрицательные.
      На небесной сфере мы мысленно проводим малые круги, параллельные небесному экватору. Зенит каждого места земной поверхности т. е. точка, находящаяся над головой наблюдателя) опишет в течение суток малый круг, который отстоит на столько же градусов от небесного экватора, на сколько данное место — от земного экватора; иначе сказать, склонение зенита равно географической широте данного места; это ясно видно на рис. 4: географическая широта точки а, т. е. а b, равна склонению точки А, т. е. А В, причем обе дугц выражены в градусах. Зенит места а находится в точке А. Для определения положения светила недостаточно одного склонения: все точки, лежащие на одном и том же параллельном круге А СВ, отстоят от экватора у В на одно и то же угловое расстояние А В и, следовательно, имеют одно и то же склонение. Для полного определения положения светила А на небесной сфере необходима еще другая величина; для этой цели служит прямое восхождение. Прямым вос-
      хождением определяется угловое расстояние круга склонения РАВ от круга склонения Ру, проходящего через так называемую точку весеннего равноденствия.
      Прямое восхождение измеряется дугою экватора уВ и всегда считается от 0° до 360° в сторону, противоположную видимому суточному движению неба; оно считается от запада к востоку.
      Прямые восхождения светил как бы соответствуют географическим долготам точек на земной поверхности. Как при определении географические долгот мест на земной поверхности проводят первый меридиан через Гринвичскую обсерваторию и от него считают все долготы, точно так же и при определении прямых восхождений светил проводят первый круг склонения через точку весеннего равноденствия, и от этого круга считают прямые восхождения светил.
      Географические долготы точек земной поверхности в большинстве случаев выражаются в угловой мере в градусах, минутах и секундах дуги; что же касается прямых восхождений, то они за редкими исключениями, выражаются во времени, причем принимается, что 24 часа соответствуют полной окружности в 360°. Действительно, видимое вращение небесного свода происходит в 24 часа. Причина, почему астрономы остановились на подобном обозначении прямых восхождений, заключается в том, что они определяют прямые восхождения по часам, показывающим 0ч.0м.и 0с.в тот момент, когда точка весеннего равноденствия проходит через южную часть меридиана места наблюдения. Стрелка подобных часов делает полное обращение в то время, когда Земля совершает одно вращение около своей оси, и снова показывает 0 ч. 0 м. 0 с, когда точка весеннего равноденствия приходит в южную часть меридиана. Промежуток времени между двумя последовательными прохождениями точки весеннего равноденствия через южную часть меридиана называется звездными сутками, а показание стрелки подобных воображаемых совершенных часов называется звездным временем. Из вышеизложенного следует, что прямое восхождение некоторой звезды равняется звездному времени ее прохождения через меридиан некоторого места земной поверхности. Например, а Лиры проходит через меридиан в 18 ч. 34,9 м. звездного времени. Поэтому ее прямое восхождение равно 18 ч. 34,9 м.
      Прямые восхождения, выраженные во времени, могут быть превращены в дугу помножением на 15. Например, 1 час (1ч) равен 15 градусам (15°), одна минута времени (1м) равна 15 мину -там дуги (15'), одна секунда времени (1с) равна 15 секундам дуги (15").
      Мы уже несколько раз упоминали о точке весеннего равноденствия у. Что же это за точка? Еще тысячу лет тому назад, египтяне и другие народы заметили, что Солнце в течение года перемещается по небесной сфере относительно звезд. Линию, по которой движется Солнце, они назвали эклиптикой. Эклиптика представляет круг на небесной сфере, пересекающийся с экватором в двух точках. Эти точки назвали точками весеннего и осеннего равноденствия, потому что в них Солнце бывает весной (21 марта) и осенью (23 сентября), и в эти дни продолжительность дня и ночи одинакова. Легко понять, что плоскость круга эклиптики совпадает с плоскостью годичного пути земли вокруг Солнца.
      Действительно, ведь нам кажется, что Солнце перемещается относительно звезд оттого, что мы, совершая о землей годичный путь вокруг Солнца, смотрим на него из различных точек пространства, по направлению к различным звездам.
      Плоскость небесного экватора и полюсы мира, к которым относят положения звезд, не сохраняют неизменного положения в небесном пространстве, а постоянно перемещаются что касается до плоскости эклиптики, то она, за исключением небольших колебаний, сохраняет неизменно свое положение. Вследствие перемещения небесного экватора, точка его пересечения с эклиптикой или точка весеннего равноденствия перемещается по эклиптике. Физическая причина явления кроется в тяготении сплюснутой (сфероидальной) Земли к Солнцу и Луне; если бы Земля была шаром, то описанного явления, называемого прецессией или предварением равноденствий, не существовало бы (см. стр. 54).
      Явление прецессии было открыто Гиппархом за 150 лет до нашей эры. Гиппарх сравнил положения звезд, им определенные, с теми положениями, которые были определены на 200 лет раньше него и из того, как изменились их координаты, заметил, что точка весеннего равноденствия медленно перемещается относительно звезд.
      Движение полюса мира и экватора происходит таким образом, что наклонение плоскости экватора к плоскости эклиптики (23°27') остается без существенных изменений.
      Ежегодно точка весеннего равноденствия перемещается по эклиптике на небольшую дугу в 50'',26, причем эта величина подвергается периодическим и вековым изменениям. Точка весеннего равноденствия описывает полную окружность в круглых числах в 26 тысяч лет.
      Прямые восхождения и склонения, как координаты,4 отнесенные к движущейся плоскости экватора, вечно изменяются, хотя и очень медленно. Вот причина, почему в каждом звездном каталоге дается, во-первых, эпоха, к которой относятся координаты звезд, и, во-вторых, величина прецессии по прямому восхождению и склонению для каждой звезды. Не вдаваясь в дальнейшее описание прецессии, мы просим читателя заглянуть в главу «Созвездия» и найти страницу 54, относящуюся к Малой Медведице: там подробнее описано это явление.
      Что касается звездных каталогов и связанного с этим вопроса о числе видимых на небе звезд, то здесь можно рассказать довольно занимательную историю.
      Первым астрономом, составившим звездную роспись или каталог звезд был Гиппарх, живший в 150 г. до нашей эры; его каталог до нас не дошел. Неожиданное появление новой звезды побудило Гиппарха составить точную роспись звезд с той целью, чтобы потомство могло знать о всякой перемене, происшедшей на небе.
      Птолемей, прославленный автор каталога «Альмагест», живший около 130 г. нашей эры оставил потомству первый звездный каталог; он является древнейшим из дошедших до нас. Имеется основание предположить, что этот каталог есть не что иное, как каталог Гиппарха, принятый Птолемеем без изменения. Это основывается на том, что Птолемей строил свои теории или системы мира на наблюдениях предшественников; сам же он не был выдающимся наблюдателем. В каталоге «Альмагест» Птолемея включено 1030 звезд.
      Нередко положения звезд, данные в «Альмагесте», ошибочны на цельте градусы, что указывает на неточные инструменты, которыми пользовались в то время.
      До десятого столетия не было сделано попыток составить новый звездный каталог. В это время появился персидский астроном Абд-Аль-Рахман Аль-Зуфи, обыкновенно называемый Аль-Зуфи; он жил с 903 по 986 г. О жизни его ничего неизвестно, кроме разве того, что он славился своею ученостью и в особенности познаниями в астрономии. Из его астрономических работ до нас дошло только описание звезд: с арабского языка этот труд был переведен Шелерупом и издан в 1874 г. Работа Аль-Зуфи основана, главным образом, на каталоге Птолемея, все звезды которого были, по уверению Аль-Зуфи, вновь осмотрены. Но он не прибавил ни новых звезд к каталогу Птолемея, ни новых определений их положения на небе. Он просто приложил к долготам звезд каталога Птолемея 12°45’ — величину прецессии за время от Птолемея до Аль-Зуфи, причем широты оставил без изменения.
      Четыре столетия после этого за составление нового каталога звезд берется знаменитый Улуг-Бек, внук завоевателя Тамерлана, княживший в Самарканде в середине XV столетия. Астроном Бэйли говорит о нем: «Улуг-Бек был не только воинственный и могущественный монарх, но также и выдающийся покровитель наук и ученых. При жизни своего отца он привлек в свою столицу всех знаменитых астрономов из различных частей света; он воздвиг в Самарканде величественную коллегию и обсерваторию, в которой постоянно около ста лиц занимались изучением наук; здесь были построены хорошие инструменты больших размеров сравнительно со всеми теми, которые существовали для производства астрономических наблюдений».
      К сожалению обсерватория эта просуществовала недолго. После смерти Улуг-Бека она была забыта, разрушена и даже следы ее затерялись. Только через 500 приблизительно лет, в 1908 г., известный археолог, знаток древней истории края,
      В.Л. Вяткин, читая одну вакуфную (дарственную мечетям) запись, встретил указание, что границей дарственного участка на северо-востоке является холм с астрономической обсерваторией, и это, в связи с другими данными, позволило ему безошибочно определить место древней обсерватории. Предпринятые раскопки сразу обнаружили на холме след кирпичной стены, являющейся частью огромной круглой башни около 40 м в диаметре. А по одному из радиусов этой окружности в направлении меридиана (от центра к югу) оказалась широкая и глубокая траншея с кирпичными лестницами и двумя громадными параллельными дугами, составленными из кусков мрамора, на которых высечены знаки, обозначающие соответствующие градусы (рис. б). Эта дуга и представляла собою главный инструмент обсерватории. Наблюдатель помещался на ступеньках между дугами. Его помощники, повидимому, передвигали по дугам тележку с диоптром. Другой диоптр должен был находиться в
      Рис. 5. Остатки обсерватории Улуг-Бека около Самарканда.
      центре окружности, частью которой являлась мраморная дуга. Наблюдатель, поджидая прохождение светила через меридиан, должен был занять такое положение, чтобы видеть светило через оба диоптра. Если звезда кульминировала высоко над горизонтом, ему приходилось спуститься вниз; для наблюдения звезды низкой — соответственно подняться выше.
      Траншея имеет в ширину 2,7 м и спускает я вниз на 13 м. Радиус мраморной дуги равен 40 м. Таким образом, центр ее находился значительно выше поверхности земли. Вероятно, с юга возвышался столб, на котором и было устроено отверстие с диоптром так, чтобы он приходился как раз в центре дуги. Часть дуги с севера также должна была подниматься над поверхностью приблизительно на V3. Но от этой надземной части дуги осталось лишь несколько отдельных кусков. Каждый кусок дуги представляет собою градус. Нумерация их соответствует отсчитываемым высотам звезд. Самый верхний кусок имеет знак нуля нижний — 90°. Благодаря громадным размерам дуги отсчеты передвигаемого диоптра могли производиться с большой сравнительно точностью.
      От других инструментов и надземных построек не сохранилось никаких следов, и только поверхностный слой, состоящий главным образом из кирпичей, простых и глазированных, свидетельствует, что здесь возвышалось огромное великолепное сооружение.
      Улуг-Бек был убит по приказанию своего сына, пожелавшего скорее унаследовать его престол. Улуг-Бек похоронен в Самарканде в усыпальнице, носящей название Гур-Эмир, что означает: могила эмира. Красивый минарет Гур-Эмира рухнул в январе 1904 г. и превратился в груду камней.
      Имя Улуг-Бека увековечено замечательным астрономическим трудом: составлением звездного каталога. Каталог Улуг-Бека является первым после каталога Птолемея, в котором положения звезд были вновь старательно определены. Он нашел, что 27 пто-лемеевских звезд лежали настолько к югу от экватора, что не могли быть видны в Самарканде и что восемь звезд не могли быть разысканы, хотя могли бы быть видимы в Самарканде. Любопытно, что Улуг-Бек, как и Аль-Зуфи, не прибавил ни одной звезды к каталогу Птолемея.
      В наше время в Ташкенте, к северо-западу от Самарканда, содержится на средства советского правительства прекрасная обсерватория, астрономы которой уже много лет систематически изучают небо.
      Следующий затем по порядку каталог звезд составлен Байером, с которым мы познакомились в конце предыдущей главы; ему принадлежит принятый и в настоящее время способ обозначения звезд. Главная заслуга его заключалась в составлении карт всех созвездий. Первое издание его книги вышло в свет в 1601 г. и отличается тем, что на обратной стороне звездных карт напечатан список звезд данного созвездия. Байер не ограничился одним северным полушарием, но распространил свои изыскания на все небо до южного полюса.
      Затем следует каталог звезд знаменитого Тихо-де-Браге, составленный около конца XVI столетия. Дополнение к этому каталогу, заключающее в себе список звезд до южного полюса, было обнародовано Галлеем, наблюдавшим звезды во время своего пребывания на острове Св. Елены в 1677 г.
      Звездный каталог Гевелия, напечатанный в 1690 г., не представляет особого интереса, за исключением некоторых новых созвездий, которые он поместил между известными.
      Современные звездные каталоги могут быть разделены на два рода: с одной стороны, каталоги, которые заключают в себе точное положение избранных звезд, а с другой — списки всех звезд до известной величины, заключающихся в некоторой части неба, с приближенным их положением. Замечательно что, первая попытка составления каталогов второго рода была сделана более чем через двести лет после того, как Галилей направил построенный им телескоп на небо. Причину отсутствия подобной попытки можно найти в громадном числе звезд, видимых в телескоп, в затруднений остановиться на каком-нибудь пределе и в кажущейся невозможности определить положение сотен тысяч звезд. Последнее затруднение удалось преодолеть в последнее время благодаря усовершенствованным способам наблюдения.
      Для нас в настоящей книге имеют значение каталоги звезд видимых просто глазом, или так называемые каталоги блестящих звезд; они обыкновенно приводятся вместе со звездными картами и называются иногда «уранометриями».
      Точное положение наиболее блестящих звезд постоянно дается в так называемом «Астрономическом календаре», издаваемом и у нас в СССР в г. Горьком.
      В тесной связи с составлением каталогов звезд находится счет их числа. Вопрос о числе звезд в небесном пространстве принадлежит к числу самых занимательных.
      Ответ на этот вопрос ограничен условиями видимого блеска звезд, а именно: сколько звезд каждой величины? Сколько звезд, первой величины, сколько второй, третьей и т. д. до слабейшей, которую можно видеть? Между звездами смежных величин существуют незаметные переходы, и нет двух наблюдателей, которые провели бы в точности одну и ту же границу между видимыми ими и невидимыми звездами. Средняя звезда четвертой величины будет обозначаться не просто 4, а 4,00; средняя звезда пятой величины — числом 5,00 (вместо 5). При таком условии звезда, которая при прежнем способе обозначения причислялась к четвертой величине, по новому способу может иметь любую величину между 3,50 и 4,50.
      При обозначении звездных величин числами, изменяющимися непрерывно, не все звезды первого класса будут обозначены первой величиной (1,00): одни, более слабые, будут иметь величину больше единицы (между 1 и 2); другие, более яркие, будут иметь дробную величину, меньше единицы, а некоторые даже отрицательную величину. Например, а Орла имеет величину 0,9; а Лиры 0,1, а а Большого Пса — 1,6.
      Результаты современных подсчетов числа звезд разной яркости приводят к табличке на стр. 26:
      Числа той же таблицы указывают нам приблизительно на общее число всех звезд, видимых просто глазом: оно равно всего только 5 тысячам. Так как в некоторый момент мы можем видеть только половину небесной сферы, то общее число звезд, видимое над горизонтом, не превышает 2500. Правда, зоркий глаз может видеть звезды и слегка более слабые чем 6,0, и тогда полное число их будет немного больше. Если же мы примем во внимание, что у горизонта видимый блеск звезд слабеет вследствие поглощения лучей света в атмосфере и что там звезды шестой величины не-
      доступны нашему зрению, то мы придем к заключению, что над горизонтом можно видеть простым глазом самое большее 272 тысячи звезд. Это число может разочаровать нас: нам кажется, что мы видим миллионы звезд; вы можете убедиться в этом, если спросите одного из своих знакомых, не изучавших астрономию, сколько он видит на небе звезд; он ответит, что видит миллионы, а между тем над всем горизонтом он может видеть только 2V2 тысячи звезд.
     
      Мы уже знаем, что если бы все звезды излучали одинаковое количество света, их видимые яркости убывали бы обратно пропорционально квадрату их расстояний от нас. В этом случае определение их расстояний представляло бы чрезвычайно простую задачу. К сожалению, уже самые простые рассуждения показывают, что предположение о равенстве количества света, излучаемого отдельными звездами, совершенно неправильно.
      Рассмотрим, например, двойную звезду Процион (а Малого Пса). Она называется двойной, потому что в действительности состоит из двух звезд, или компонентов. Главная, т. е. более яркая звезда имеет видимую величину 0,5, тогда как слабенький компонент (видимая величина 13) может быть видим только в самые мощные телескопы. Эти звезды обращаются вокруг их общего центра тяжести в течение 39 лет и, несомненно, представляют собою единую систему, управляемую законом всемирного тяготения. Отсюда следует, что их взаимное расстояние весьма мало в сравнении с их расстоянием от нас. Мы можем поэтому сказать с достаточной точностью, что обе составляющие этой двойной звезды находятся на одном и том же расстоянии от нас, так что большое различие их видимых яркостей есть следствие большого различия их истинных яркостей. Разность видимых величин в этом случае равна 12,5, т. е. истинная яркость главной звезды в сто тысяч раз больше истинной яркости слабой составляющей. Можно указать еще множество подобных примеров, не оставляющих сомнения в том, что отдельные звезды излучают далеко не одинаковое количество света.
      Вообразим себе теперь, что все наблюдаемые нами звезды так переместились в небесном пространстве, что оказались на одном и том же расстоянии от нас. В этом случае различия видимых яркостей были бы следствием только одной причины: различия истинных яркостей. С подобным явлением мы встречаемся, например, рассматривая весьма отдаленные скопления звезд, все члены которых находятся от нас на одном и том же расстоянии. Отнеся мысленно все звезды к одному и тому же расстоянию, которое примем за стандартное, мы можем условно видимую величину звезды, наблюдаемую с этого расстояния, назвать ее абсолютной величиной. Точно так же назовем абсолютной яркостью звезды ее видимую яркость, оцененную с этого стандартного расстояния. Астрономы принимают за стандартное расстояние такое расстояние, которое свет проходит в течение 25,26 года. Эту условную единицу звездных расстояний называют парсеком. Парсек равен 206 265 сред -них расстояний Земли от Солнца, т. е. 3 -101 км. Таким образом, видимая величина (соответствующая видимой яркости) звезды, отнесенная к расстоянию в один парсек, есть ее абсолютная величина (соответствующая абсолютной яркости). Наше Солнце, наблюдаемое с расстояния в один парсек, представлялось бы звездочкой в 4,9 величины. Это, стало быть, и есть абсолютная величина Солнца. Для того чтобы определить абсолютную величину звезды по ее видимой величине, надо знать расстояние до звезды. В настоящее время (путем определения так называемых годичных параллаксов, или косвенными путями) мы знаем расстояния, а следовательно, и абсолютные величины многих сотен звёзд. Каковы же результаты этих определений?
      Оказывается, что по количеству абсолютно слабые звезды преобладают; наоборот, абсолютно яркие звезды составляют лишь малый процент общего числа звезд. Рекордной по своей слабости является красная звезда, открытая американским астрономом Ван-Мааненом в 1927 г. в созвездии Льва. Ее видимая величина 13,5, расстояние 2,5 парсека и, значит, абсолютная величина равна 16,5. Солнце в 44000 раз ярче звезды Ван-Маанена. Самой абсолютно яркой из известных нам звезд является S Золотой Рыбы, видимая в южном полушарии. Она на 13,8 величины ярче Солнца, т. е. излучает в 340000 раз больше света, чем наше Солнце. Однако среди так называемых новых звезд, дающих кратковременную вспышку яркости, имеются и еще более яркие; так, 5 Андромеды в момент наибольшего блеска была на 20 величин абсолютно ярче Солнца.
      Поверхность шара, радиус которого равен R см, как известно из геометрии, есть 4пR2 квадратных см. Пусть количество света, испускаемое одним квадратным сантиметром поверхности звезды, есть j. Тогда полное количество света, испускаемое звездою, будет j*4nR2 Снабдим указателем 0 те же величины для Солнца, так что полное количество света, испускаемое Солнцем, будет j0 х4л R2 о- Тогда отношение абсолютных яркостей звезды и Солнца будет jR2 : j0R20 = L : L0. Как показывает расчет L:L0= 1 :. Так как звезда Ван-Маанена красная (температура около 2500°), а Солнце — звезда желтая (температура 6000, то, отсюда не трудно найти, что радиус звезды Ван-Маанена в ДО раз. меньше радиуса нашего Солнца. По сравнению с последним эта звезда является настоящим карликом.
      Наоборот, если мы возьмем красную яркую звезду Бетель-гейзе ( а Ориона) и сделаем соответствующие расчеты, то окажется, что она почти на 8 величин абсолютно ярче нашего Солнца и что радиус ее в 2% раз больше радиуса Солнца. Насколько огромна эта звезда, показывает следующее сравнение. Если бы мы поместили Бетельгейзе на месте Солнца, ее поверхность почти достигла бы орбиты Марса. С другой стороны, при своих огромных размерах Бетельгейзе оказывается весьма разреженной звездой. В среднем, Солнце почти в миллион раз плотнее Бетельгейзе. Рассмотренная звезда является настоящим гигантом в сравнении с Солнцем.
      Оказывается, что указанные выше случаи вовсе не являются единичными. Американский астроном Ресселл показал, что все красное и красноватые звезды резко делятся на две группы — звезды-гиганты и звезды-карлики.
      Подобное деление существует и среди желтых звезд, к которым принадлежит и наше Солнце. Среди них Солнце является карликом, хотя и не таким резко выраженным карликом как абсолютно красные звезды.
      При одном и том же цвете (красном или желтом) карлики обладают гораздо большими плотностями, чем гиганты. Последние окутаны необычайно разреженными и обширными раскаленными атмосферами.
      Вначале считали, что деление на карликов и гигантов имеется только у красных и у желтых звезд, что белые звезды — все гиганты. Сравнительно недавно были, однако, открыты белые карлики. Примером последних является рассмотренный выше слабенький спутник Проциона. Белые карлики — самые удивительные звезды, известные нам. Лучше всего изучен белый карлик — спутник Сириуса1. Он на 16 величин абсолютно слабее Солнца. Его радиус составляет только 0,03 радиуса Солнца. Зато его плотность совершенно исключительна: в среднем он в ДОШ) раз плотнее нашего Солнца, т. е. в одном кубическом дюйме его содержится почти тонна вещества. Современная физика объяснила нам основные свойства подобного сверхплотного вещества, воспроизвести которое в наших лабораториях пока еще совершенна невозможно.
      1 Подробнее о спутнике Сириуса говорится при описании созвездия Большого Пса.
     
      Глава III
      ПОСОБИЯ ПРИ НАБЛЮДЕНИЯХ НЕБА
     
      1. ЗВЕЗДНЫЕ КАРТЫ И НЕБЕСНЫЙ ГЛОБУС
      Каждый любитель астрономии должен иметь хорошую карту звездного неба, иначе он не будет в состоянии найти интересующую его звезду, туманность или планету, он не сможет проследить путь метеора или зарисовать с пользой для науки хвостатую комету.
      Звездное небо, которое нам кажется расположенным на сфере, нельзя изобразить сразу целиком в виде карты на плоскости, так же как это нельзя сделать и в случае земного шара. Подобно глобусам изображающим земной шар, существуют глобусы без искажений, изображающие звездное небо, причем предполагается, что наблюдатель смотрит на этот глобус как бы из центра этого глобуса. Благодаря этому фигуры созвездий на глобусе являются зеркальным отображением того, как они в действительности видны на небе; например, «ручка ковша» Большой медведицы смотрит на глобусе вправо, а не влево от «Кастрюли». Кроме того, на глобусе изображают только наиболее яркие звезды, не слабее четвертой или пятой величины. Все это вносит некоторое неудобство в пользование глобусом, но зато если глобус снабжен кругами, изображающими меридиан и горизонт (рис. 6), то при помощи его можно решать множество астрономических задач, имеющих практический интерес. Например, при помощи глобуса можно определить, как в данный день и час в данной местности расположены созвездия относительно горизонта, можно определить время восхода и захода Солнца в любой местности и в любое время года.
      Сейчас в продаже можно найти черные звездные глобусы, к сожалению лишенные кругов меридиана и горизонта.
      Для начинающих пользование обычной звездной картой встречает затруднения, так как на этих картах не отмечено положение горизонта, скрывающего от наблюдателя многие из созвездий. Не указано также положение стран света — севера, юга, востока и запада, что затрудняет ориентировку на небе, разыскивание созвездий, положение которых относительно горизонта в разные часы ночи и в один и тот же час, но в разные дни года бывает неодинаково.
      В этом отношении на помощь начинающему приходят так называемые «подвижные карты» звездного неба. На этих картах при надлежащей их установке можно видеть, как расположены относительно горизонта и меридиана созвездия в данный день и час. Правила пользования такими картами, несколько различающимися по устройству, описаны в специальном приложении к каждой карте.
      Педагогическим институтом в г. Калинине высылается желающим подвижная звездная карта системы Л. В. Кандаурова. Из других подвижных карт можно еще назвать подвижную карту неба А. А. Чи-кина, изданную приложе-т3 [Пц ms нисм к журналу «В мастерской природы» за 1918 г.
      Рис. 1. Гномоническая проекция. Существует также карта проф. Михайлова, изд. 1924 г., и карта проф. Яшнова, изд. 1921 г., которую можно выписать из Горьковского отделения Всесоюзного астрономо-геодезического общества. Менее подробные подвижные карты можно в настоящее время найти в приложениях к учебнику по астрономии для средней школы Набокова и проф. Воронцова-Вельяминова (изд.1935 г.) и к постоянной части Астрономического календаря (издаваемого в г. Горьком).
      На более подробных звездных картах обычного типа небесная сфера изображается в проекции на плоскость. Способы проектирования различны, но все они вносят те или иные искажения. Поэтому обычно небесную сферу изображают по частям на нескольких отдельных картах, всякий раз подбирая такую проекцию, чтобы изображение созвездий возможно менее отличалось от их истинного вида для невооруженного глаза. Для некоторых специальных целей, как например, для зарисовки путей падающих звезд, применяют специальную проекцию, специальную карту, на которой все дуги больших кругов изображаются прямыми линиями.
      Гномоническая проекция получается, если мысленно поместить глаз наблюдателя в центр небесной сферы — в точку О (рис. 7), а изображения звезд перенести на плоскость, XY касательную к небесной сфере в избранной точке. Изображения звезд получатся, если линии, соединяющие места звезд, на небесной сфере с центром проекции О, продолжить до пересечения с плоскостью проекции. Преимущество гномонической проекции заключается в том, что всякий большой круг небесной сферы изображается прямой линией действительно, большой круг получается от пересечения небесной сферы плоскостью, проходящей через ее центр, а тром небесной сферы совмещается центр проекции (глаз наблюдателя), то пересечение всякой плоскости с небесной сферой и с плоскостью проекции будет прямая линия. Эта проекция, безусловно, необходима для наблюдения падающих звезд, так как их полет совершается в плоскостях, проходящих через глаз наблюдателя и пересекающих небесную сферу по большим кругам, а потому в гномонической проекции полет падающих звезд изображается прямыми линиями, что весьма удобно для наблюдателя. Для рисования хвоста комет также необходима гномоническая проекция.
      В гномонической проекции, как и во всех других, наибольшее искажение будет у краев карты, а в центре — наименьшее.
      Для обычных же звездных карт при изображении областей неба, близких к полюсу мира, пользуются обычно стереографической проекцией, получаемой способом, ясным из рис. 8. В этой проекции круги склонения изображаются прямыми линиями, а круги, параллельные экватору, кругами разного диаметра. Для изображения областей неба в области склонений, примерно от 60° до 30°, прибегают часто к конической проекции (рис. 9), а для изображения экваториальных областей неба применяют проекцию на касательный цилиндр (рис. 10).
      Начинающему наблюдателю надо брать карту, не содержащую слишком слабых звезд, которых очень много и которые затрудняют ориентировку. Любителю, имеющему телескоп или призматический бинокль, наоборот, нужна также и более подробная карта, показывающая слабые звезды. Ниже приводим характеристику некоторых наиболее распространенных карт и атласов, изданных в СССР.
      Звездный атлас проф. К. Д. Покровского. Изд. 1923 г. Содержит 13 карт и градусные сетки на прозрачной бумаге, позволяющие производить точный отсчет координат на карте. Содержит все звезды до 6 величины до 40 — 45° южного склонения.
      Звездный атлас проф. А. А. Михайлова. Изд. 1920 г. Прекрасно изданный атлас из 4 карт со звездами до 51/2 величины от северного полюса до 40° южного склонения. Он наиболее удобен для наблюдений невооруженным глазом и с биноклем.
      Атлас Мессера. Изд. 1901 г. Содержит 28 карт до 35° по склонению со звездами до 6 величины.
      Атлас северного звездного неба проф. А. А. Михайлова. Наиболее подробен. Он содержит все звезды до 71/2 величины и состоит из 15 карт неба от северного полюса до экватора. Он отличается от всех предыдущих тем, что он «немой», т. е. на нем не написаны ни названия, ни обозначения звезд, ни границы, ни фигуры созвездий. К тому же, в атласе нет звезд южнее экватора. Пользоваться этим атласом можно лишь при наличии уже некоторого знакомства с созвездиями, но вместе с тем этот атлас более подробен и точен сравнительно с упомянутыми выше.
     
      2. БИНОКЛЬ В АСТРОНОМИЧЕСКИХ НАБЛЮДЕНИЯХ
      В истории астрономии и всех физических наук 1609 г. замечателен тем, что в конце этого года Галилей, услыхав об изобретении телескопа, сделал сам такой телескоп, и этим положил начало новой астрономии, расцвет которой не прекращается и до настоящего времени.
      Когда Галилей направил телескоп на небесные светила, он был поражен теми красотами, которые раскрылись перед его глазами. На что бы он ни направлял построенный им телескоп, всюду он видел что-нибудь новое. Рассматривая Юпитера, Галилей открывает у него четыре спутника; направляя телескоп на Млечный путь, он убеждается, что это великое небесное сияние состоит из громаднейшего числа мелких звезд; рассматривая Солнце, уменьшив, конечно, его блеск, он открывает на нем пятна; наводя телескоп на Венеру, он замечает, что она имеет 32
      фазы, подобно нашей Луне; любуясь Луною, он открывает на ней горы и измеряет их высоту.
      Небольшой телескоп, построенный Галилеем, был совершенно такого же устройства, как современные театральные бинокли, только в одну трубку. Галилей выбрал сочетание двояковыпуклой и двояковогнутой чечевиц и построил одиночную трубу, а не двойную; это был монокль, а не бинокль.
      Портрет Галилея
      Мореход, рассматривающий в бинокль морскую даль, инженер, производящий изыскания трассы железной дороги, путешественник, изучающий окрестности своего пути, астроном, осматривающий небо, наконец зрители, наблюдающие в театре спектакль, — все пользуются телескопом Галилея.
      Телескоп Галилея постепенно и непрерывно улучшался, и уже к началу двадцатого века астрономы могли гордиться теми гигантскими телескопами, которые построены для изучения небесных светил. Телескопы с объективами в 50 см, 80 см и даже до 1 м украшают обсерватории Старого и Нового Света. Телескопы, в которых вместо объектива применяется вогнутое посеребренное зеркало, достигают еще больших размеров, — до 21/2 м в диаметре. Но и бинокль не потерял своего значения. Маленькая галилеева трубка является во многих случаях полезнейшим прибором в руках астронома. Изменения блеска ярких переменных звезд могут быть наблюдаемы в бинокль со всей желаемой точностью. Для близоруких бинокль является незаменимым инструментом при осмотре неба, да и для дальнозорких и для лиц с нормальным зрением всегда полезно иметь под рукою бинокль для быстрого осмотра неба и для подробного изучения некоторых светил и созвездий.
      Для астрономических целей бинокль должен быть светосильным. Что касается до его увеличения, то оно не должно быть значительным. Важно иметь много света и большое поле зрения,
      а это возможно только при коротком фокусе сравнительно с размерами объектива. Владеть биноклем с большим увеличением становится затруднительным: его нелегко направить на избранную звезду, а малейшие содрогания руки передаются биноклю и, становясь заметными, мешают наблюдениям.
      Большое увеличение бинокля не имеет большого значения еще и потому, что звезды всегда кажутся нам точками как бы велико ни было увеличение бинокля; даже в самые усовершенствованные современные телескопы, при самых сильных увеличениях звезды остаются все-таки точками: так отстоят далеко они от нас. Поэтому за увеличением бинокля при астрономических наблюдениях не следует гнаться. Если читателю предстоит выбрать бинокль, то он должен непременно остановиться на бинокле с большим объективом и коротким фокусом.
      Я много лет наблюдаю переменные, а иногда и новые звезды простым театральным биноклем, изображение которого приведено на рис. 11. Очень важно иметь бинокль в легкой алюминиевой оправе. Еще лучше иметь так называемый призматический бинокль (рис. 12). Призматический бинокль, который часто называют полевым или военным, делает доступным звезды до девятой величины и дает увеличение около шести раз. В него можно увидеть спутников планеты Юпитера, большие пятна на Солнце и большие горы на Луне, а для наблюдения переменных звезд от пятой до девятой величины он прямо незаменим. Прекрасные призматические бинокли выпускаются теперь советскими заводами и стоят сравнительно недорого.
      Бинокль всегда следует держать в чистоте. Для этого надо осторожно вытирать пыль со стекол мягкой тряпочкой. Оптики советуют вытирать стекло замшей; но лучше не пользоваться замшей, так как она царапает стекло; если же все-таки пользоваться замшей, то ни в каком случае не следует прижимать ее крепко к стеклу, а сложить ее в виде подушечки и легко протирать стекла.
      Бинокль должен быть выбран по глазам и должен давать отчетливые изображения звезд; все они должны казаться точками; в такой бинокль приятно наблюдать, и им можно многое сделать.
      Бинокль оказал науке значительные услуги: законы изменения блеска всех блестящих переменных звезд выведены из наблюдений, произведенных в бинокль. Причина постоянного или периодического изменения их блеска долго оставалась тайною и раскрыта для некоторых из них только недавно, при помощи так называемого спектрального анализа. Но последний пришел на помощь астрономам только тогда, когда законы изменения блеска переменных звезд были уже изучены. Не все, однако, законы еще известны: ежегодно открываются новые явления, которые приходится таки при помощи маленького, но ценного бинокля.
      Полюбуйтесь, читатель, в бинокль Плеядами или Гиадами; выберите для этого тихую, ясную, безлунную ночь, вы придете в восторг и не скоро расстанетесь с биноклем. А если в течение нескольких вечеров вы будете следить за изменением блеска в Лиры или 5 Цефея и обработав свои наблюдения, увидите, каким удивительным изменениям подвергается их блеск, то сами убедитесь насколько ценен бинокль при изучении небесных явлений.
      Каждый любитель астрономии, имеющий бинокль, должен испытать его качества. Лучшим для этого средством могут служить звезды вблизи полюса мира. Из наблюдений над ними каждый может определить, какой величины звезды доступны для его бинокля. Для той же цели могут служить другие звездные группы, например, звезды в Волосах Вероники, Плеяды, Гиады и другие. Подробные сведения о звездной группе Плеяд читатель найдет в главе «Созвездия», стр. 46.
      Увеличение бинокля может быть определено сравнением величины предмета, видимого невооруженным глазом, с его ве -личиною, видимою в бинокль. Для астрономических целей всего лучше брать легкие бинокли с малым увеличением (от двух до шести раз).


      KOHEЦ ГЛАВЫ И ФPAГMEHTA КНИГИ

 

НА ГЛАВНУЮТЕКСТЫ КНИГ БКАУДИОКНИГИ БКПОЛИТ-ИНФОСОВЕТСКИЕ УЧЕБНИКИЗА СТРАНИЦАМИ УЧЕБНИКАФОТО-ПИТЕРНАСТРОИ СЫТИНАРАДИОСПЕКТАКЛИКНИЖНАЯ ИЛЛЮСТРАЦИЯ

 

Яндекс.Метрика


Творческая студия БК-МТГК 2001-3001 гг. karlov@bk.ru