НА ГЛАВНУЮТЕКСТЫ КНИГ БКАУДИОКНИГИ БКПОЛИТ-ИНФОСОВЕТСКИЕ УЧЕБНИКИЗА СТРАНИЦАМИ УЧЕБНИКАФОТО-ПИТЕРНАСТРОИ СЫТИНАРАДИОСПЕКТАКЛИКНИЖНАЯ ИЛЛЮСТРАЦИЯ

Библиотечка «За страницами учебника»

Очевидное? Нет, ещё неизведанное... Смилга В. П. — 1966 г.

Серия «Эврика»
Вольдемар Петрович Смилга

Очевидное?
Нет, ещё неизведанное...

Художник Б. Жутовский

*** 1966 ***


DjVu


PEKЛAMA Заказать почтой 500 советских радиоспектаклей на 9-ти DVD. Подробности...

Поиск фриланс спецов - http://freelance-youdo.ru/ - размести и жди отклики

 

      СОДЕРЖАНИЕ
     
      Введение, в котором автор откровенничает с благосклонным читателем, а также пробует весьма назидательно объяснить, почему и зачем он написал все, что следует далее 3
      Глава I, всецело посвященная тому, кто начинал.
      ГАЛИЛЕЙ. ПРИНЦИП ОТНОСИТЕЛЬНОСТИ... 9
      Глава II, содержащая очень краткие сведения о жизни и характере Ньютона. В заключение читатель может узнать, что такое метод принципов.
      НЬЮТОН. МЕХАНИКА (метод)...34
      Глава III, самая длинная во всей книге и, вероятно, самая трудная; в ней обсуждается теория измерений в физике.
      НЬЮТОН. МЕХАНИКА (анализ основных понятий: длина, время)... 42
      Глава IV, недостатки которой отчасти искупает эпиграф.
      В этой главе довольно сухо и многословно объясняется, что такое система отсчета, а также неоднократно повторяется очень существенная мысль: «Пока не указа-
      на система отсчета, всякие разговоры о механическом движении совершенно лишены содержания».
      НЬЮТОН. МЕХАНИКА (анализ основных понятий: движение)...84
      Глава V, в которой автор сначала рассуждает, а под конец удивляется; причем призывает благосклонного читателя последовать его примеру.
      НЬЮТОН. МЕХАНИКА (анализ основных понятий: система отсчета)...99
      Глава VIt и, как надеется автор, довольно интересная.
      НЬЮТОН. ТЯГОТЕНИЕ... 131
      Глава VII, хотя и весьма расплывчатая, но тем не менее в конце, после долгих отступлений, объясняет, почему именно гипотеза эфира стала особенно привлекательной для физиков.
      СВЕТ, ЭФИР (Ньютон, Гюйгенс)...151
      Глава VIII, посвященная обоснованию волновой теории света. Терпеливый читатель, возможно, получит удовольствие, познакомившись с очень тонкими и далеко идущими выводами, которые были сделаны при исследовании неожиданного эффекта двойного лучепреломления.
      ЭФИР (продолжение)...166
      Глава IX, прочитав которую читатель, возможно, сможет чуть лучше представить, как «просто» заниматься физикой.
      РОЖДЕНИЕ НЕУВЛЕКАЕМОГО ЭФИРА... 180
      Глава X, главное достоинство которой — довольно подробный рассказ об эффекте Допплера и опыте Майкельсона, а основной недостаток — обилие рассуждений. В этой главе читатель расстается, наконец, с эфиром, чтобы перейти к теории относительности.
      НЕУВЛЕКАЕМЫЙ ЭФИР, ЕГО РАСЦВЕТ И ГИБЕЛЬ 203
      Глава XI, в которой автор пытается запутать терпеливого читателя, убеждая его в противоречивости постулатов Эйнштейна. В итоге выясняется, что постулаты Эйнштейна несовместимы с классической механикой, и автор призывает читателя разделить его восхищенное удивление Эйнштейном. Первая половина главы, возможно, несколько трудна, но утешение можно найти в том, что самое главное содержится как раз во второй половине.
      ЭЙНШТЕЙН (основные постулаты)...238
      Глава XII, в которой существенно обобщается постулат о постоянстве скорости света, после чего обсуждаются понятия времени и одновременности в теории относительности.
      ЭЙНШТЕЙН (одновременность, время)...261
      Глава XI И, очень сухо сообщающая читателю, что такое «интервал» и преобразование Лоренца. Прочитав эту главу до конца, можно также узнать, как своеобразна в теории Эйнштейна формула для сложения скоростей.
      ЭЙНШТЕЙН («удивительные» выводы теории)... 281
      Глава XIV, в которой обсуждаются два вывода теории относительности, вызывающие обычно максимальное недоумение.
      ЭЙНШТЕЙН (время, длина)...291
      Глава XV, все недостатки которой должно искупить содержание.
      ЭЙНШТЕЙН. ЗАКОНЫ МЕХАНИКИ (масса и энергия). 308
      Заключение, в котором автор прощается с читателем... 324
      Глава XVI, последняя и отчасти еретическая. В ней предаются анафеме фотонные ракеты, а также выясняются взгляды автора на мечту, после чего он, возможно, быстрее расстанется с многотерпеливым читателем.
      ФОТОННЫЕ ГРЕЗЫ... 326

     
      Эффектное название, возможно, и интригует, но, уж конечно, ничего нэ объясняет. А в этой книге довольно серьезно рассказывается о том, чего достигла физика со времен Галилея до Эйнштейна, о явлениях древних, как мир, и, по-видимому, всем знакомых, а в конечном счете — о специальной теории относительности.
     

      ВВЕДЕНИЕ,
      в котором автор откровенничает с благосклонным читателем, а также пробует весьма назидательно объяснить, почему и зачем он написал все, что следует далее
      Не знаю, каким я могу казаться миру, но самому себе я представляюсь ребенком, который играет на берегу и развлекается тем, что иногда отыскивает красивую раковину или камешек, более яркий, чем обычно, в то время как великий океан истины неисследованной расстилается передо мной.
     
      НЬЮТОН
      О та книга в конечном итоге посвящена специальной теории относительности. Чтобы понять ее содержание с чисто формальной точки зрения, достаточны знания в объеме восьми-девяти классов средней школы. Но фактически для чтения необходимы и известная привычка к абстракции и довольно напряженное внимание. Поэтому книга, возможно, покажется трудной и утомительной и для человека со средним образованием.
      Однако поскольку изложение неоднократно прерывается общими рассуждениями, различными примерами и аналогиями, поскольку почти все утверждения декларируются, но не доказываются, — очевидно, получилось нечто, что следует отнести к научно-популярному произведению.
      В мировой литературе есть немало популярных книг, посвященных теории Эйнштейна. Некоторые из них написаны крупнейшими учеными. Автор же должен с законным сожалением заметить, что не принадлежит к их числу. И неужели он надеется, что этот его очерк кое в чем выгодно отличается от остальных популярных изложений теории относительности?
      Ведь в нем нет почти ни одного примера, соображения, факта или обобщения, которые не были бы целиком взяты у других.
      Мало того, план рассказа, основная идея его построения также заимствованы.
      Все же одно обстоятельство, может быть, можно рассматривать как достоинство книги: автор использовал много различных источников, попытавшись отобрать то лучшее, что есть в различных работах, и «творческое лицо автора» проявилось только в оценке уже написанных книг.
      Таким образом, как принято говорить в подобных случаях, личной собственностью автора являются только ошибки.
      Такой метод творчества, вообще говоря, не нов, однако автор проводил его исключительно последовательно и неуклонно.
      Впрочем, суметь выбрать из разных источников лучшее — весьма почетная и благородная задача, и я буду по-настоящему рад, если читатель признает, что в какой-то мере она выполнена.
      Остается сказать, ради какой цели написано все дальнейшее.
      Стиль и характер любого рассказа (даже если вы просто пересказываете чужие мысли), естественно, во многом зависят от личного отношения к нему рассказчика.
      Этот очерк целиком продиктован восхищенным удивлением. И это чувство, чувство преклонения перед настоящей наукой и настоящими учеными, восхищенное удивление перед силой человеческого разума мне и хотелось передать.
      Я очень боюсь показаться сентиментальным и меньше всего хотел бы оказаться в позе поучающего, но, по-моему, это хорошее чувство.
      Если вы наберетесь терпения и прочитаете все дальнейшее, может быть, вам станет несколько ближе психология ученого, и вы почувствуете в какой-то мере, какая замечательная вещь физика! И тогда, надеюсь, вы простите автору все недостатки, которых, смею уверить, найдется немало.
      Вполне естественно поинтересоваться: какое отношение все только что сказанное имеет к теории Эйнштейна?
      Самое непосредственное. Теория относительности, пожалуй, самый красивый пример работы физиков. А поскольку автор несколько связан именно с физикой, он, естественно, считает, что физика самая замечательная из наук. И поэтому понятно, почему мне хотелось рассказать именно о теории относительности.
      Есть, впрочем, еще одна причина.
      Теории Эйнштейна парадоксальным образом «не повезло». Революционна роль ее не только в коренном изменении чисто физических взглядов. Не менее важная сторона дела в том, что после Эйнштейна в физике совершенно немыслимо использование «самоочевидных» понятий, терминов и утверждений, которые так часто при непосредственном анализе оказываются бессодержательными. А завораживающая магия красивых словосочетаний настолько сильна, что в известной степени гипнотизировала даже физиков, пока не пришел Эйнштейн.
      И вместе с тем нет другой такой физической теории, вокруг которой нагромождалось бы столько бессмысленных слов. Особенно это относится к представлению о ней в широких кругах нефизиков.
      Теория Эйнштейна окутана тяжелым туманом вздорных философских построений, сенсационных выводов, нелепыми возражениями и столь же нелепыми восхищенными толкованиями. Короче — всем тем, что Л. И. Мандельштам классически четко определил, как «непонятное философствование о непонятных вещах».
      И наша непосредственная задача — по возможности строго разобраться в чисто физическом содержании теории, не занимаясь обсуждением тех проблем, ясное объяснение которым в нашей беседе дать нельзя.
      В частности, я с тяжелым сердцем отказался от возможности поговорить об общей теории относительности.
      Прошу оценить эту жертву, ибо нет ничего приятней, чем порассуждать о непонятном и тем «свою образованность показать».
      Но непонимание теории Эйнштейна широкими кругами нефизиков, по моему подозрению, в основном связано даже не с трудностью самой теории. Главная причина в том, что основы классической механики Ньютона (не говоря уже о классической теории электромагнетизма) так же загадочны для неспециалистов, как самые сложные и абстрактные построения современной науки. Причем самое печальное, что, когда речь заходит о механике Ньютона, есть иллюзия понимания, поскольку механика включена в курс средней школы.
      Эта иллюзия, вероятно, и приводит к очень распространенному мнению, что современная физика в отличие от физики XIX века недоступна непосвященным. И отсюда ес-тественный вывод: «Наука в наши дни сложнее, чем раньше».
      Но идейная сторона физики Ньютона не проще (если не сложнее) теории Эйнштейна. Автору кажется, что во все времена физика была достаточно сложна. И поэтому, прежде чем говорить об Эйнштейне, необходимо проследить тот путь, который привел к теории относительности. А с другой стороны, настоящее уважение к ученым может появиться только в том случае, если хоть в малой степени представить, как тяжелы их поиски.
      Наконец, последнее замечание. В физике нельзя принимать на веру ничьи слова, даже слова Эйнштейна или Ньютона. Утверждая, что вы убеждены в справедливости какого-нибудь положения только потому, что оно принадлежит величайшему физику нашего времени — Эйнштейну, вы нанесете, пожалуй, худшее оскорбление его памяти. Поэтому любое замечание в нашей беседе, а, вероятно, встретится много непривычного и нового даже в тех вопросах, которые обычно считают совершенно ясными, следует принимать очень осторожно.
      Вообще при более основательном знакомстве с физикой, естественно, может возникнуть чувство некоторой подавленности.
      Вы видите, как изящны, законченны физические теории, вас увлекает безукоризненная и строгая логика авторов этих теорий, вы невольно попадаете под влияние чужой мысли или, что значительно печальней, чужого авторитета.
      Вы перестаете думать и начинаете цитировать. Очень часто этому процессу сопутствует бессознательное убеждение, что
      все существенное в науке уже сделано, даже если на словах вы признаете обратное. Мысль перестает работать, и со временем привычное все более охотно принимается за истинное.
      Поучения вряд ли могут рассеять подобные настроения. Предмет нашего разговора — теория относительности — лучший пример вечной незаконченности науки. И может быть, к концу вы увидите, что исполненные гордого смирения слова Ньютона, взятые эпиграфом, не просто красивая фраза.
      В своей работе автор в наибольшей степени использовал труды и идеи замечательных советских ученых Л. И. Мандельштама и С. И. Вавилова.
      Мне очень хочется верить, что не будет дерзостью посвятить этот скромный очерк их памяти.
     
      ГАЛИЛЕЙ.
      ПРИНЦИП ОТНОСИТЕЛЬНОСТИ
      Мы даем здесь основания учения совершенно нового о предмете, столь же древнем, как мир. Движение есть явление, по-видимому, всем знакомое, но, между тем, несмотря на то, что философы написали об этом предмете большое количество толстых томов, важнейшие свойства движения остаются неизвестными... Мы покажем все это, и наша работа послужит основанием науки, которую великие умы разработают обширнее.
     
      ГАЛИЛЕЙ
      Я склоняю свои колени перед достопочтенными генерал-инквизиторами, прикасаюсь к святому евангелию и заявляю что я верю и буду впредь верить всему тому, что признает истинным и чему учит церковь.
      Мне запрещено было святой инквизицией верить или учить ложному учению о движении Земли и покое Солнца, потому что оно противоречит священному писанию. Несмотря на это, я написал и даже издал книгу, в которой я излагаю это проклятое учение и привожу сильные доводы в его пользу. Потому меня заподозрили в ереси.
      Дабы рассеять у каждого христианина-католика это справедливое подозрение, я отрекаюсь и проклинаю упомянутые заблуждения и ереси, а также вообще всякое другое заблуждение и мнение, идущее вразрез с учением церкви. В то же время я клянусь в будущем никогда не высказывать ни устно, ни письменно чего-нибудь такого, что могло бы вызвать против меня подобное подозрение. И наоборот, я обязуюсь немедленно сообщить святому судилищу, если я где-нибудь встречу ересь или буду предполагать ее наличие».
      Эти покаянные и благонамеренные слова, произнесенные Галилео Галилеем 22 июня 1633 года, в приличествующей случаю обстановке, на коленях и в рубище, с внешней стороны явились как бы итогом его жизненного пути.
      Оставшиеся ему девять лет он проводил почти в полном уединении (причем на всякий случай под домашним арестом), и специальный интердикт «раба рабов божьих» — святейшего Урбана VIII запрещал ему печатать какие-либо труды.
      К сожалению «власть предержащих», интердикт был нарушен. В 1638 году в Нидерландах, где, как известно, процветала проклятая богом и людьми протестантская ересь, издается основной труд Галилея, действительный итог его жизни — «Беседы и математические доказательства, касающиеся двух новых областей науки...»
      Галилео Галилей — продолжатель обедневшего, но знатного дворянского рода флорентийских нобилей — родился в Пизе в 1564 году.
      Уже примерно столетие, как тесный мир средневековья удивительным образом расширился. Португальские, испанские, а теперь английские и голландские корабли бродят по Mare incognitum в поисках золота, пряностей, слоновой кости, рабов, эльдорадо — источника вечной жизни и всех мыслимых и немыслимых возможностей молниеносного обогащения. Каждое плавание — прыжок в неизвестность. А потому вторым, а иногда и первым лицом на корабле является штурман («пилот»). Он обязан разбираться в «портуланах» и «периплах» **, вести счисление пути и по звездам (ибо другого выхода нет) определять место корабля. Каждый моряк и, что еще важнее, снарядивший его корабль купец (а купцов становится все больше) заинтересованы в том, чтобы его снабдили наилучшими картами и инструментами, ибо все уже понимают: от них успех плавания зависит не меньше, чем от мореходных качеств корабля. Отчасти поэтому математики и астрологи (астрономы) считаются уважаемыми и достойнейшими мужами.
      Моряки в случае успеха иногда получают деньги, славу и титулы. Иногда не получают ничего. Но торговые дома в итоге всегда получают прибыль.
      Маге incognitum — Море неизвестности (Неведомое море).
      *«П о р т у л а н ы» и «п е р и п л ы» — компасные морские карты и лоции.
      Несколько слов о церкви и ее «научных» методах.
      Возникает торговый, а затем мало-помалу и промышленный капитал, — возникает буржуазия, и все более расшатываются сонные уклады феодальной Европы.
      Перемен не смогла избегнуть и церковь. Католические обряды и молитвы чересчур сложны и, главное, слишком дороги. Нужна «дешевая церковь».
      И вот торжествует лютеранство в Германии и в Скандинавии, кальвинизм — в Швейцарии, в Голландии, в Англии. Религиозные войны сотрясают Францию.
      Новому классу необходимы и новые идеи и новая наука, которая давала бы практические результаты. Вера в авторитеты подорвана — ведь многие утверждения ученейших мужей, даже освященные авторитетом Рима, оказались на поверку чистейшим вздором. Воистину наступает на редкость «смутное и проклятое время», кое-кто (таких, правда, страшно мало) начинает сомневаться даже в самом бытии всевышнего.
      Как в старой сказке про ученика чародея, погибшего от им же вызванных духов, новая эпоха порождает идеи куда более революционные, чем ей по плечу. И надо сказать, что католическая церковь — а власть ее все еще беспредельно велика — очень быстро и резко реагирует на новую ситуацию.
      Впрочем, когда речь идет о ереси, реформаторы вполне солидарны с католиками, и костры в Риме и Женеве складываются из одинаковых поленьев. Особенно часто они пылают в «любимых чадах» Рима — Испании, Португалии и Италии.
      И всякий христианин-католик слишком хорошо осведомлен об этом.
      Но дело не только в том, что, восставая против общепринятых взглядов, ученый должен иметь в виду и такой неопровержимый научный аргумент, как «очищающее душу, по возможности кроткое, без пролития крови» отправление к предвечному.
      Отшлифованная веками, продуманная и отточенная, всецело подчиненная Риму, система воспитания с детских лет прививает слепое поклонение авторитету и цитате. Метод изучения любого нового явления изумительно ясен: следует отыскать в текстах отцов церкви соответствующее место. Если же явление противоречит текстам — его не существует.
      «Этот род людей полагает, — раздраженно пишет Кеплеру Галилей, — что философия — какая-то книга, как «Энеида» или «Одиссея»; истину же надо искать не в природе, а путем сличения текстов... Они пытались логическими аргументами, как бы магическими прельщениями, отозвать и удалить с неба новые планеты».
      И подобная система давала свои результаты. Страшно подумать, сколько талантливых людей растратило свою жизнь на толкование какого-либо туманного места Фомы Аквинского (а у святейших отцов подобных мест было предостаточно) или изучение такой, скажем, актуальной проблемы: каким образом произошло непорочное зачатие? Чтобы вырваться из цитатного плена схоластики, нужно обладать исключительно ярким умом. Но тогда...
      Томмазо Кампанелла (1568 — 1639) — социолог, философ и астролог — «более страшная змея, чем Лютер и Кальвин», по категорическому заключению отцов-иезу-итов, 27 лет провел в 50 различных тюрьмах, где его семь раз подвергали жесточайшим пыткам.
      ...Джордано Бруно — философ (1548 — 1600) — сожжен в Риме.
      ...Луиджи Ванини — философ (1585 — 1619) — злостнейший еретик, отрицавший, в частности, божественность Христа, повешен в Тулузе. Перед казнью ему вырвали язык; тело казненного сожгли, а прах развеяли по ветру.
      ...Нидерландский врач Везалий (1514 — 1564) — основатель научной анатомии — присужден к смерти испанской инквизицией.
      Впрочем, вряд ли стоит активно иронизировать по этому поводу. Не зная ничего, ученые были готовы проверять все. Но перед нами — пусть предельно наивный, однако научный эксперимент.
      ...Испанский врач Сервет сожжен Кальвином в Женеве в 1553 году.
      Можно долго продолжать этот жуткий реестр.
      Мало кому из отступников суждено умереть своей смертью. Особенно тщательно за этим следит специально созданный для борьбы с ересью орден «Псов господних» — иезуитов.
      Новый путь в науке, пожалуй, опаснее, чем дороги конквистадоров, ибо нет надежды на счастливый конец.
      Казнь еретиков настолько обычное явление, что, например, смерть такого крупнейшего философа, как Джордано Бруно, сожженного при колоссальном стечении народа, почти не замечена современниками. Документальных свидетельств о его гибели крайне мало, и, как ни удивительно, существовала версия, что было сожжено его изображение, а сам Бруно остался жив.
      Основная масса народа и даже просвещенные круги все еще полностью преданы церкви и находятся во власти самых диких суеверий. Ученые не составляют исключения. Нам почти невозможно представить, как в те времена причудливо уживались гениальные идеи рядом с поразительными нелепостями.
      Многие все еще рассчитывают найти страну людей с песьими головами и остров Сирен. Во всяком случае, их существование охотно допускается.
      Еще в конце XVII века на заседании Королевского общества в Лондоне серьезно проверяли, может ли паук выбраться из круга, сделанного из толченого рога носорога. Паук убегал, что и заносилось в протокол. А быть может, на следующем заседании Ньютон докладывал о своих работах.
      Новой науки еще нет, и, пожалуй, основное — нет и нового метода, он толькотолько создается.
      В науке же официальной все еще безраздельно царит Аристотель. Из его учения давно уже вычищено все, что может пробуждать самостоятельную мысль. Труды его тысячу раз прокомментированы и истолкованы.
      Сам Аристотель, как совершенно «точно» известно, посмертно удостоен высшей награды — всевышний специальным указом избавил его от адских мук, которые были ему уготованы, как явному язычнику.
      Почти приравнены к творениям отцов церкви его труды, и сомневаться в них (даже признавая истинным все священное писание) — очень и очень смахивает на ересь. А лавры еретика, напомним еще раз, слишком хорошо известны каждому христианину.
      В этой приятной атмосфере и начинает Галилей.
      Начало образования, конечно, монастырь. Он даже принят послушником в монашеский орден. Но, на счастье, отец забирает его домой, и духовная карьера Галилея прерывается. Надо думать, что его отец — обедневший флорентийский дворянин Винченцо Галилей — был, по существу, первым воспитателем ученого. Широко образованный, страстный поклонник музыки и математики, безусловно талантливый и интересный человек, он передал сыну свою любовь к науке и свой скептицизм по отношению к авторитетам.
      Любопытная деталь — отцу принадлежит трактат о старой и новой музыке, написанный в форме диалога (в будущем — любимая литературная форма сына), в котором он, между прочим, весьма скептически характеризует цитирование авторитетов как высший довод в научных спорах. Подобные соображения по тем временем близки к крамоле.
      По настоянию отца юноша начинает изучать медицину в Пизанском университете. Но дело не ладится, а физика Аристотеля, которую приходится скрупулезно штудировать, вызывает все более серьезные сомнения. И вообще Галилей не собирается быть медиком или физиком — он мечтает о карьере художника.
      Снова вмешивается отец. По его совету сын изучает работы Архимеда и Эвклида. И Галилей быстро забывает о своем «призвании»: отныне и до конца дней своих он будет принадлежать физике.
      Есть великолепный портрет Галилея в старости. С него глядит на нас не хрестоматийный старец, мученик инквизиции, терзаемый последние годы угрызениями совести. Умное, властное, суровое лицо человека, который прожил нелегкую и сложную жизнь, подчиненную одной идее.
      С юных лет — покровители, без которых ученый той эпохи подобен моряку без компаса. Первый — маркиз дель-Монте, сам крупный ученый, бескорыстно восхищавшийся талантом юноши. В дальнейшем покровителей придется добывать при помощи интриг и унизительной лести.
      Еще молодым он привыкнет держать свои мысли при себе. Слишком памятна история в Пизе... Сначала всеобщее возмущение «научных кругов» его критикой Аристотеля. Потом повод — резкий отзыв о нелепом проекте одного из многочисленных побочных сыновей его законного государя Козимо Медичи I — и его выгоняют с кафедры.
      После этого восемнадцать лет Галилей ведет кафедру в Падуе. Его взгляды уже определились. Он давно знает, что физика Аристотеля несостоятельна; он знает и то,
      что учение Коиерника истинно. Почти все, что появится через тридцать лет в «Диалоге о двух главнейших системах мира», уже готово. Но он продолжает читать лекции, придерживаясь Птолемея, а результаты своих трудов сообщает только друзьям. Он пишет Кеплеру (1597 год!):
      «Я счастлив, что в поисках истины нашел столь великого союзника. Действительно, больно видеть, что есть так мало людей, которые стремятся к истине и готовы отказаться от превратного способа философствования. Но здесь не место жаловаться на печальное состояние нашего времени, я хочу лишь пожелать тебе удачи в твоих замечательных исследованиях. Я делаю это тем охотнее, что уже много лет являюсь приверженцем учения Коперника. Оно объяснило мне причину многих явлений, совершенно непонятных с точки зрения общепринятых взглядов. Я собрал множество аргументов для опровержения последних, но я не решаюсь их опубликовать. Конечно, я сделал бы это, будь больше таких людей, как ты. Но так как этого нет, я держу себя осторожно».
      И все же временами он срывается. В 1604 году резкая стычка со схоластами по поводу новой звезды, появление которой противоречило учению Аристотеля о неизменности сферы неподвижных звезд. Настораживают и его отдельные сомнительные высказывания. Подозрительны и лекции, читаемые не на традиционной латыни, а на родном итальянском.
      Репутация Галилея как благонамеренного католика явно не на высоте. И он предусмотрительно запасается высокими покровителями. Светлейший великий герцог Тосканский — его признательный ученик (а он его «первый философ и математик», «почтительнейший и преданнейший слуга и вассал»). Будущий папа Урбан VIII — кардинал Барберини — его личный друг, которому он посвящает свои работы.
      Он живет среди интриг, споров о приоритете, нелепых возражений, чаще всего среди полного равнодушия и непонимания.
      «Когда я через мою трубу хотел показать профессорам Флорентийской гимназии спутников Юпитера, то они отказались посмотреть и на них и на трубу...»
      Все время приходится быть настороже. И все время он напряженно работает, работает до последних дней.
      Тяжко больной, разбитый физически и морально, отрекшийся и осужденный, он заканчивает труд своей жизни «Беседы» и почти ослепший (!) ведет астрономические наблюдения. «Я хоть и молчу, но провожу время не совсем праздно», — как всегда, очень сдержанно напишет он в эти годы.
      Десятилетия унизительной борьбы с невеждами наложили на Галилея свою печать. Он резок, замкнут, пожалуй, даже угрюм. Часто цинично насмешлив. Он уважает и ценит очень немногих и весьма нелестно отзывается о роде человеческом: «Число дураков бесконечно».
      С годами он привык умело уклоняться и от светской болтовни о науке с титулованными «любителями» и от дискуссий с окружающими его бесчисленными «докторами зубрежки» (его собственное определение).
      Но он не совсем одинок. Узкий круг друзей и ученики, которые боготворят своего учителя, — обетованный островок в море невежества. В этом обществе он не брюзгливый старец, не льстивый и искушенный царедворец, он тот, кто он есть, — гуманист, смелый тонкий мыслитель и всегда и прежде всего гениальный физик, влюбленный в свою науку.
      Ученики, кстати, окажут ему позднее плохую услугу. Преклонение их так велико, что они сильно приукрасят его биографию, и многому, о чем они сообщат, попросту нельзя верить.
      Его интересы широки. Он блестящий знаток античного и современного искусства и сам в часы отдыха слагает сонеты. В его книгах рассыпаны ссылки на поэтов, остроумные примеры, и, помимо всего, он создает новый жанр — научно-популярную литературу.
      Но когда речь идет о работе, в нем нет ничего от поэта: точно, сухо и непредвзято он исследует факты и только факты, сдерживая полет фантазии. Проходят годы, прежде чем он сформулирует выводы.
      Являя собой полную противоположность сверкающему фантазеру Джордано Бруно, которого так любят с ним сравнивать, исповедовавший одну религию — истину, Галилей обладал, на мой взгляд, не меньшим личным мужеством.
      Вот таким представляется человек, о котором лучше всего сказал Лагранж:
      «Открытие спутников Юпитера, фаз Венеры, солнечных пятен и т. д. потребовало лишь наличия телескопа и некоторого трудолюбия, но нужен был необыкновенный гений, чтобы открыть законы природы в таких явлениях, которые всегда пребывали перед глазами, но объяснение которых тем не менее всегда ускользало от изысканий философов».
      У нас нет возможности, да это и не входит в наши задачи, сколько-нибудь подробно исследовать творчество Галилея, и дальнейшие страницы никоим образом не нужно расценивать как творческую биографию.
      Даже простое перечисление работ Галилея заняло бы слишком много места, и о подавляющем числе научных результатов
      Нечто вроде предисловия ко второй половине этой главы.
      Кстати, о привычных представлениях. Разве легко поверить (именно поверить!), что на каждый квадратный сантиметр нашего тела воздух (?!) давит с силой в 1 килограмм?
      Внимание!
      Небольшая
      мистификация.
      не будет даже упомянуто. Очень кратко мы коснемся только одной, правда, самой важной стороны творчества Галилея — анализа законов движения. Той работы, которая и поныне заставляет ученых поражаться его необыкновенным гением.
      Еще одно маленькое отступление, и мы перейдем к сути дела.
      Лучше всего понять гений Галилея можно, сопоставив его с Эйнштейном. Основные идеи Эйнштейна ничуть не сложнее и не парадоксальнее тех, которые выдвинул Галилей.
      Но если идеи Галилея кажутся большинству людей нашего времени понятными и простыми, то взгляды Эйнштейна требуют известного напряжения мысли. Это естественно. С детских лет мы воспитываемся в духе классической физики, а люди с большим трудом изменяют привычные представления.
      Поэтому лучше всего постараться как бы забыть все, что мы знаем, и спокойно делать выводы из тех фактов, которые мы находим в «самой великой книге — природе», как любил говорить Галилео Галилей.
      Итак, движение. Причина движения, безусловно, сила. Телега не едет, если в нее не впряжены лошади.
      Если в телегу впрячь четырех лошадей, то они повезут ее быстрее, чем две. Отсюда вывод: чем большая действует сила, тем больше скорость.
      Далее, если выпрячь лошадей, телега остановится. В этом нас убеждает повседневный опыт. Следовательно, для поддержания скорости всегда требуется сила. А чтобы тело двигалось равномерно и прямолинейно, к нему должна быть приложена постоянная по величине и направлению сила.
      Не стоит торопиться с улыбками. Вы сразу увидели ошибочность теории движения Аристотеля только потому, что с шестого класса помните законы механики, которые получили, что называется, даром.
      И все же позволю себе предположить, что вы тем не менее обмануты. Вряд ли кто-либо обратил внимание на то, что были использованы такие понятия, как «равномерное и прямолинейное движение» и «постоянная по величине и направлению
      сила». А ведь, употребив эти слова, мы сказали либо очень многое, либо ничего.
      По существу, анализ этих понятий должен привести к вполне определенному взгляду на пространство и время. Можно возразить, что такие вещи, как пространство, время и сила, определять незачем — это самоочевидные категории и понятия. Но... самые глубокие заблуждения в науке возникают обычно тогда, когда что-либо считается самоочевидным.
      Несколько забегая вперед, скажем: великая заслуга Эйнштейна именно в том, Довольно ЧТО ОН показал, ЧТО даже В конце XIX СТО- наидателНьноев летия у физиков не было ЯСНОГО представ- замечание, ления о таких «очевидных» понятиях, как время.
      Однако оставим пока вопрос о времени.
      Как опровергнуть Аристотеля? Как нельзя оценить обед, не пообедав, точно так же нельзя опровергнуть (или утвердить) физическую теорию, не прибегнув к эксперименту. И Галилей первый в средневековой Европе понял это с предельной ясностью и глубиной.
      Конечно, не стоит преувеличивать — подобные взгляды высказывались и до него. Уже легендарный Парацельс чеканно сформулировал: «Теория, не подтвержденная фактами, — все равно, что святой, не сотворивший чуда». Но Галилей был первым, во всяком случае в физике, кто незыблемым принципом своего творчества положил изучение и анализ эксперимента, практики. И на этом пути он обнаружил ошибку Аристотеля. Галилей не доверяет словам. Он ставит опыты.
      Сравнительно легко он находит, что за равные отрезки времени свободно падающее тело проходит все возрастающие отрезки пути и что постоянная сила — вес тела (хотя ясного представления о силе у Галилея нет) приводит к равноускоренному движению.
      Правда, чтобы точно измерять малые отрезки времени (доли секунды), ему понадобилось создать совершенно новый для того времени вариант водяных часов, что он и делает с замечательным остроумием. Да и вообще ему не раз приходилось преодолевать чисто экспериментальные трудности подобного рода. Предшественников нет: первооткрывателем приходится быть во всем. Но в конце концов эта часть работы требовала всего лишь исключительного упорства и замечательной изобретательности.
      Значительно труднее сделать совершенно неожиданное и неочевидное обобщение: если бы отсутствовало сопротивление воздуха, «то все тела падали бы одинаково, то есть с одинаковой скоростью при равных высотах падения... двигаясь при этом равномерно ускоренно так, что в равные промежутки времени скорость возрастает на равные величины». Иначе говоря, Галилей подмечает, что полученные цифры приводят к так хорошо известному в наши дни каждому восьмикласснику закону изменения скорости падения, как функции времени падения, V=g*t.
      Говоря о Галилее как о физике-теорети-ке, стоит отметить два момента.
      Во-первых, он не блуждает в бесконечных поисках причины явления, что было характерно для школы Аристотеля. (По существу, он принимает метод принципов Ньютона, речь о котором впереди.)
      Действительно, Галилею не известно ничего о законе тяготения, он не владеет, по существу, понятием силы, он не знает, почему Земля притягивает все тела, сообщая им одинаковое ускорение. Галилей прежде всего ставит вопрос: как происходит явление? И ответ ищет в анализе опытов.
      И во-вторых, гениальная интуиция позволяет Галилею учесть и отбросить все побочное, нехарактерное и выхватить основное при анализе наблюдаемого явления.
      Так, изучая падение тел, он учитывает не только сопротивление воздуха, но и эффекты, обусловленные законом Архимеда. Он прямо указывает: «При падении тела в какой-нибудь среде надо иметь в виду, что на тело действует не полный его вес, а лишь избыток веса над весом вытесненной жидкости или среды».
      Переход от опыта к теоретическому обобщению — обычно самый трудный этап. Физику никогда не доводится изучать явление в «чистом виде». Можно сказать, что он обычно оказывается в положении фотографа, рассматривающего снимок, на котором отпечатано сразу несколько негативов. История науки знает сотни примеров, когда ученые пропускали открытия только потому, что не понимали, что они наблюдают. И именно в анализе результатов проявляется полностью талант Галилея.
      А как тяжело было разобраться в законах движения, можно судить уже по тому, что представления Аристотеля оставались незыблемыми около 2 тысяч лет.
      Изучая законы падения тел и рассмотрев вертикальное отвесное падение, Галилей, естественно, переходит к движению по наклонной плоскости. Он находит, что ускорение при падении постоянно во времени и тем меньше, чем меньше угол наклона. В предельном случае горизонтальной плоскости, утверждает Галилей, тело будет двигаться вообще без ускорения. И причиной движения тела по наклонной плоскости оказывается сила тяжести. При этом Галилей понимает, что когда тело находится на наклонной плоскости, то движение вызывается не всем весом, а лишь его частью, тем меньшей, чем меньше наклон.
      Еще раз следует напомнить: Галилей не знает, почему тело падает на Землю. Более того, у него нет ясного понятия о силе, нет формулы, связывающей силу и ускорение, он не читал «Начал» Ньютона: они выйдут в свет лишь спустя 35 лет после его смерти.
      Но его интуиция позволяет заключить: «Когда тело движется в горизонтальной плоскости, не встречая сопротивления своему движению... то движение его является равномерным и продолжалось бы бесконечно, если бы плоскость простиралась в пространстве без конца».
      Итак, если отсутствует сила — скорость остается постоянной.
      «Скорость, однажды сообщенная движущемуся телу, строго сохраняется, если устранены внешние причины ускорения или замедления».
      Образно говоря, это утверждение ставит с головы на ноги всю механику.
      Впервые формулируется положение, похожее на закон инерции.
      Стоит обратить особое внимание на соотношение теорий Галилея и Аристотеля. Как уже упоминалось, Аристотель считал, что для поддержания постоянной скорости необходимо воздействие постоянной силы. Взгляды Галилея диаметрально противоположны.
      Только в том случае, когда на тело не действуют никакие силы, скорость остается неизменной. Речь идет не об уточнении старой теории, не об ее развитии или ограничении области ее применения. Отнюдь нет! Вся механика Аристотеля начисто зачеркивается.
      Подобные ситуации очень редки в истории наук и обычно встречаются в годы их юности. Чаще всего у открывателей есть точка отправления, есть отметки на том пути, по которому они идут. Лишь пионерам нечего взять от предшественников и приходится начинать на пустом месте.
      Таким основоположником в физике был Галилео Галилей. Он заложил фундамент той механики, создать которую было суждено Ньютону.
      Очень многое ему оставалось неясным. Часто он ошибался и сворачивал с правильного пути.
      Трудно и ожидать чего-либо другого; сам Галилей лучше всех сознавал и значение и недостатки своих работ (вспомните его слова в эпиграфе).
      И хотя в его трудах часто встречаются утверждения, прочитав которые можно подумать, что не только первый, но и второй закон механики были ему известны и, следовательно, Ньютон в известной мере был лишь популяризатором его идей, пожалуй, не стоит увлекаться переоценкой работ Галилея. Даже первый закон механики, тот самый закон инерции, который Галилей сформулировал, казалось бы, предельно
      четко, ни он, ни все остальные предшественники Ньютона не понимали до конца. И только у Ньютона законы механики принимают ту ясную, законченную форму, в которой они известны нам. (Впрочем, мы увидим в дальнейшем, что даже сам Ньютон не избежал ошибок.)
      Возможно, подобная оценка творчества Галилея излишне сдержанна, однако детальный анализ его работ, к сожалению, увел бы нас слишком далеко в сторону, и потому... Пойдем далее.
      Если следовать Галилею, между покоящимся и равномерно движущимся телом в известном смысле устанавливается равно-
      правие. Равномерно двигающийся по поверхности моря корабль и корабль, мирно стоящий на якоре, в равной степени не подвержены «воздействию внешних причин, вызывающих ускорение или замедление». Более того, наша Земля может покоиться в пространстве или равномерно двигаться — в обоих случаях отсутствуют «внешние причины».
      Но если это так, то, может быть (может быть!), все физические процессы,протекающие на равномерно движущемся теле,
      Вот он — принцип относительности Галилея!
      в частности на Земле (если она равномерно двигается, конечно), должны протекать так же, как на покоящемся?
      И (внимание!) Галилей высказывает эту мысль.
      Да, он полагает, что с точки зрения механики совершенно равноправны тело, находящееся в покое, и тело, которое равномерно движется.
      Любой механической опыт, поставленный на равномерно и прямолинейно движущемся теле, будет протекать точно так же, как если бы оно покоилось.
      Это положение — принцип относительности Галилея — один из самых замечательных и удивительных законов природы.
      Однако уже сейчас необходимо сделать несколько замечаний.
      Во-первых, внимательный читатель, вероятно, обратил внимание, что мы еще не объяснили, что такое движение, а следовательно, наши рассуждения о движущихся и покоящихся телах пока, строго говоря, бессодержательны. В дальнейших главах подробно разбирается понятие движения в механике — вопрос не такой простой и очевидный, как может казаться. Пока же мы следуем за Галилеем, а у него (как ни странно!) не было четкого представления о понятии механического движения.
      Во-вторых, позже, когда будут сформулированы законы Ньютона, мы увидим, как принцип относительности Галилея можно вывести из этих законов. Сейчас же заметим, что одного закона инерции еще недостаточно, чтобы утвердить принцип относительности. И хотя несколько выше мы как бы связывали в сознании Галилея закон инерции и принцип относительности, следует признаться, что это не более чем литературная вольность.
      Между законом инерции и принципом относительности действительно очень тесная связь, но Галилей скорее всего просто гениально угадал свой принцип, «подглядел» его в природе, не связывая с законом инерции. В это можно поверить, прочитав те страницы «Диалога о двух главнейших системах мира», где, по существу, утверждается принцип относительности. (Вероятно, излишне пояснять, что в современном виде сам Галилей никогда не формулировал «принцип относительности Галилея».)
      «Диалог» Галилея — работа, окончательно уничтожившая систему Птолемея, — замечателен не только содержанием, но и формой. Прямо проповедовать учение Коперника нельзя — это запрещено. Но при обширных связях Галилея можно добиться появления книги, где всего лишь обсуждается эта «еретическая» система. Такая книга и написана. Он не защищает Коперника. Нет! С внешней стороны абсолютно беспристрастно анализируется спор «Птолемей — Коперник». Автор со своим отношением к предмету как будто отсутствует. Никаких выводов вроде бы не сделано. Два ученых — сторонник Коперника и защитник Птолемея — спорят между собой, а он, Галилео Галилей, просто пересказывает их дискуссию. Читатель же волен судить, чьи доводы убедительней. И вот, как беспристрастный судья, Галилей разбирает попытки опровергнуть Коперника, использовав законы аристотелевой механики.
      Ведь если какие-либо механические опыты, произведенные на Земле, дали бы возможность установить, что Земля не движется вокруг Солнца, а находится в покое, то спор бы был разрешен.
      И Галилей в «Диалоге» прямо приводит, казалось бы, очень веские возражения против Коперника.
      Если Земля движется, то камень, падающий с башни, должен отклониться в сторону, поскольку он стремится двигаться только к центру Земли, а за время падения камня Земля «проезжает» под ним. Снаряд, выпущенный из орудия вертикально вверх, по той же причине должен упасть далеко в стороне от жерла пушки. Ядро, пущенное на запад, пролетит значительно дальше, чем на восток, так как суточное движение Земли, если оно существует, увлекает орудие к востоку, и в первом случае пушка «уезжает» от ядра, а во втором «догоняет» его. Облака и птицы должны отставать от Земли и т. д. Но повседневный опыт убеждает нас в обратном. Следовательно, Земля покоится?!
      Между прочим, в «Диалоге» используется очень изящный прием спора. Все эти доводы против гипотезы о движении Земли высказывает и убедительно развивает Сальвиати — убежденный сторонник Коперника, а Симпличио — защитник Аристотеля — восхищенно слушает и поддакивает. И вот, продемонстрировав более глубокое понимание Аристотеля, чем его поклонники, использовав, казалось бы, неопровержимые аргументы в его пользу, Сальвиати — Галилей резко меняет фронт.
      Провозглашая принцип относительности, он проводит аналогию между Землей и равномерно плывущим кораблем. Все тела на корабле ведут себя так, как будто он покоится: камень, падающий с мачты, всегда опускается у ее подножия; мяч, брошенный по движению или против движения корабля, полетит одинаково далеко. Ни один опыт на равномерно движущемся корабле не дает возможности установить: плывет корабль или покоится. А следовательно, ни один опыт на Земле не может сказать нам, покоится она или мчится в пространстве с колоссальной скоростью, вращаясь при этом вокруг оси.
      Возможно, многие из вас с трудом сдерживают возмущение или, в лучшем случае, недоумение — ведь хорошо известны десятки опытов, проделанных на Земле и позволяющих установить ее суточное движение. Достаточно вспомнить о маятнике Фуко, о том, что камень, брошенный с вершины башни, отклонится к востоку и т. д. В наши дни проявлять подобную безграмотность, безусловно, неловко — эти факты известны любому десятикласснику. Эти факты известны и автору. Но Галилею они известны не были.
      Ирония судьбы. Предлагая принцип относительности, Галилей не понимает, что он верен только для равномерного прямолинейного движения, и использует его для равномерного вращательного движения.
      Мы-то знаем, что механические явления на вращающемся теле будут протекать по-другому, чем на неподвижном или равномерно и прямолинейно движущемся.
      Равномерное движение по окружности можно обнаружить благодаря центробежным силам и легко отличить от состояния покоя или равномерного прямолинейного движения. Но все эти азбучные для нас истины Галилею неведомы. Однако и в своих ошибках он значительно ближе к истине, чем Аристотель.
      Человек со средним образованием может легко увидеть ошибки и путаные места в его трудах. Но чтобы получить новые результаты такого же масштаба, необходим такой же «необыкновенный гений».
      Вот и все о Галилее. В дальнейшем, вооруженные законами Ньютона, мы вернемся ко всем вопросам, которые нами разбирались. Мы четко сформулируем основные принципы механики, достигнем как будто предельной ясности и... особо остановимся на тех местах, которые остались неясными и Ньютону, — на его ошибках.
      И далее мы увидим, как исследование, казалось бы, совсем другой области физики — учения об электромагнитных волнах — привело к необходимости полностью изменить все наши представления о пространстве и времени или, говоря точнее, заставить физиков задуматься над вопросом: «Что же такое время и пространство?»
      Вероятно, через некоторое время произойдут новые революции в физике. Возможно, через несколько поколений взгляды нашего поколения будут казаться такими же наивными, какими представляются нам некоторые идеи Галилея, но физик любой эпохи будет с преклонением вспоминать Галилея — первого, который понял во всей глубине, что новые идеи надо искать в «великой книге — природе», опираясь только на факты.
      В заключение стоит привести один пример, очень четко характеризующий строгий и честный стиль научного мышления Гали-
      лея. Многие слыхали, конечно, что гипотеза о бесконечности вселенной впервые выдвинута Джордано Бруно. Но это не совсем точно. Эта проблема, видимо, очень занимала Галилея, он неоднократно к ней возвращался. И пожалуй, пошел дальше Бруно.
      Поскольку еще нет никаких опытных данных в пользу конечности или бесконечности вселенной, Галилей заключает1 «Я остаюсь в нерешимости, какое из этих двух положений правильно, хотя мои личные доводы заставляют меня склоняться скорее к идее бесконечности мира...»
      ГЛАВА И,
      содержащая очень краткие сведения о жизни и характере Ньютона. В заключение читатель может узнать, что такое метод принципов
      НЬЮТОН. МЕХАНИКА (метод)
      Вывести два или три общих начала движения из явлений и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, — было бы очень важным шагом в философии, хотя бы причины этих начал и не были открыты.
      НЬЮТОН
      Вступление, ценное главным образом потому, что упомянута книга С. И. Вавилова «Ньютон» — может быть, лучшая работа по истории физики на русском языке.
      Восхищение Ньютоном освящено традицией.
      Еще его современники полностью исчерпали весь арсенал восторженных эпитетов, сравнений и гипербол, и потомкам оставалось только повторяться, что, впрочем, и делалось без опасения утомить человечество.
      Ньютоном восхищаются все: и ученые, по-настоящему понимающие подлинное значение его работ, и те, кто не очень представляет, что он, собственно, сделал, но, впрочем, твердо уверен, что восторгаться Ньютоном следует, — это признак хорошего тона,
      Чтобы понять всю исключительность, аномальность личности Ньютона, следует прочитать блестящую книгу С. И. Вавилова. И после этой книги, вероятно, на всю жизнь вы не сможете отделаться не столько от чувства восторга, сколько от самого наивного удивления. На мой взгляд, восхищаться можно только понятными вещами, а творческий потенциал Ньютона, по-видимому, немыслимо воспринять человеческим разумом.
      Жизнь и карьера Ньютона очень бедны внешними событиями и очень похожи (опять же с внешней стороны) на судьбы десятков добропорядочных английских джентльменов, упорных и часто довольно даровитых, добивавшихся всего своими руками, чтивших бога и короля («Да хранит его бог!») и глубоко убежденных, что нет страны лучше, чем старая добрая Англия с ее старыми добрыми традициями, и что не было, нет и не будет дела важней, чем обеспечить ее (и конечно, попутно свое) процветание.
      Исаак Ньютон родился в 1643 году (через год после смерти Галилея) в семье с весьма средним достатком. Очевидно, ему повезло со школьным учителем. Судя по сохранившимся данным, это был культурный и умный человек. Сразу после школы — Кембриджский университет (точнее, Тринити колледж). Английские университеты того времени представляли собой сумму колледжей — почти независимых друг от друга учебных заведений. (Впрочем, в Кембридже и Оксфорде эта система сохранилась до наших дней.)
      За восемь университетских лет (1661 — 1669) Ньютон прошел всю лестницу от студента до заведующего кафедрой. (Не надо думать, что это исключительная карьера: в ту эпоху на такой путь требовалось значительно меньше времени, чем сейчас.) Юноша очень серьезен, замкнут, пользуется всеобщим уважением, но вряд ли даже ближайшие друзья — их, кстати, очень мало — подозревают, что он уже создал анализ бесконечно малых величин, наметил невиданную программу дальнейших исследований и обладает рядом совершенно революционных идей и результатов в механике, оптике и теории тяготения.
      Известные теперь каждому школьнику опыты по разложению солнечного света уже закончены, и получен закон убывания силы тяготения с расстоянием.
      Все это было сделано за два года (1665 — 1667), не говоря о том, что одновременно он овладел экспериментальной техникой, в частности техникой изготовления телескопов — самых тонких приборов того века.
      Ньютон не печатает своих работ. Еще больше, чем Галилей, больше, пожалуй, чем кто-либо из известных ученых, он придирчив к своим результатам, и работа не появляется на свет, пока он не убеждается до конца в ее полной и безоговорочной точности и законченности.
      Карьеру Ньютона, как и Галилею, создает телескоп. Совершенно новый по своей идее телескоп-рефлектор приносит Ньютону звание члена Королевского общества, президентом которого он будет впоследствии. Это происходит И января 1672 года. А уже 6 февраля этого же года Ньютон докладывает на заседании общества свой мемуар «Новая теория света и цветов» — мемуар, который, по словам С. И. Вавилова, «впервые показал миру, что может сделать и какой должна быть экспериментальная физика».
      С этого времени Ньютон непрестанно поражает мир обилием и качеством своих работ.
      Его общественное положение делается все более блестящим. В частности, в 1686 — 1689 годах он — депутат парламента от университета. Правда, злые языки утверждают, что в парламенте он выступал всего один раз — с просьбой закрыть окно, «ибо с Темзы дурно пахнет», но, очевидно, Ньютон не был таким ученым «не от мира сего», каким часто принято его представлять. Во всяком случае, получив должность хранителя Монетного двора (1696 год), он великолепно справился с весьма тяжелыми задачами (перечеканка всей английской монеты), которые требовали больших административных способностей.
      В 1705 году Ньютон получает дворянство, он принят при дворе; официально и неофициально, друзьями и врагами признан первым натурфилософом мира. Его богословские работы также получают восторженные оценки, хотя сэр Исаак и отклоняется в них очень часто от канонизированных взглядов. Нам, конечно, трудно представить, что Ньютон тратил массу времени и сил на исследования различных богословских проблем. Но факт остается фактом: сэр Исаак Ньютон был глубоко религиозен и, пожалуй, склонен был рассматривать всю свою научную работу как посильный вклад в познание божьего провидения. Правда, тогда подобное совмещение профессии — физик и богослов — было в порядке вещей, но в наши дни его богословские увлечения вызывают только чувство недоуменного и горького сожаления.
      В последние годы жизни Ньютона часто отвлекают от работы административные и общественные обязанности; да и, самое главное, возраст начинает брать свое. Сказывается переутомление от исключительных по интенсивности трудов прежних лет. Однако старик не бросает науку и даже продолжает экспериментировать. Но в основном он занимается шлифовкой своих прежних результатов и прежде всего труда его жизни — «Математических начал натуральной философии».
      Эта книга вышла в свет в 1687 году. В ней дана теория тяготения и движения небесных светил и сформулированы все основные законы механики, которы-е оставались незыблемыми до Эйнштейна.
      Итак, механика. Прежде всего — о методе.
      «Я не измышляю гипотез, — любил повторять на склоне лет Ньютон. — Все, что не выводится из явлений, должно называться гипотезою, гипотезам же метафизическим, физическим, механическим, скрытым свойствам не место в экспериментальной философии».
      Следовательно, гипотеза не вытекает непосредственно из опыта. Гипотезу выдвигают по интуиции, используя какие-то аналогии, а потом уже пытаются согласовать с известными фактами. Так, например, атомистическая структура материи до недавнего времени оставалась гипотезой.
      Часто гипотеза полностью рушится под давлением фактов; причем иногда проходит не одна сотня лет, прежде чем эти факты появятся. (Вспомним о гипотезе Канта — Лапласа.)
      Иное дело принципы. Они создаются на основе опытных данных, в результате их тщательного анализа.
      Принципы недоказуемы логически, но обязательно имеют в основе прочную базу эксперимента. Поэтому в той или иной форме они остаются в науке навсегда. Хотя, конечно, дальнейшие исследования могут ограничить область их применения, обнаружить, что принципы носят не абсолютный, а имеют приближенный характер.
      Примеры принципов: аксиомы геометрии Эвклида, ньютоновские законы механики, закон всемирного тяготения, законы сохранения...
      Итак, выдвигая гипотезу, мы должны допускать, что новые факты могут полностью ее опровергнуть.
      Формулируя принцип, мы уверены, что хотя в дальнейшем он, возможно, окажется верен лишь приближенно и область его применения значительно уже, чем мы полагали, тем не менее в какой-то форме в науке он останется.
      Однако, если вдуматься, разница между принципом и гипотезой представится несколько условной — ведь гипотеза также должна быть согласована с опытными данными и опираться прежде всего на опыт. С другой стороны, никто не гарантирован от неправильного вывода при анализе опыта — от формулировки неправильного принципа, который будет опровергнут новыми фактами.
      Впрочем, наша задача не давать идеальные определения (занятие вообще весьма неблагодарное), а разобраться, в чем существо метода Ньютона — метода, которому он сам дал название «метода принципов».
      Попробуем подойти к вопросу с иной стороны. Обратимся к словам Ньютона, взятым в качестве эпиграфа: «Вывести два или три общих начала движения из явлений и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, — было бы очень важным шагом в философии, хотя бы причины этих начал и не были открыты».
      Мне кажется, что в последних словах этой фразы скрыта суть метода принципов, основное его отличие от метода гипотез.
      Ньютон в своих исследованиях совершенно сознательно отказывается объяснить, почему явления происходят именно так, а не иначе, какова их природа, какие свойства материи приводят к тем общим закономерностям, которые можно извлечь из наблюдений. Он удовлетворяется тем, что формулирует общие законы.
      Великолепная иллюстрация — закон тяготения. Что говорит теория Ньютона о природе тяготения? Какие теоретические соображения подтверждают, что сила взаимодействия двух тел пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними? Абсолютно никаких. Ньютон не знает и, более того, не желает знать, почему закон тяготения имеет именно такой вид. Ньютону достаточно на основе наблюдений сформулировать сам закон.
      Но есть и другой путь научного исследования. Установив, например, закон тяготения, можно выдвигать различные предположения о природе гравитации, предлагать теоретические схемы, из которых вытекал бы этот закон. Можно пойти еще дальше и, даже не зная самого закона, строить различные гипотезы о природе тяготения.
      Физика гипотез, метод гипотез состоит как раз в том, что ученый стремится проникнуть в природу явления глубже, чем позволяют накопленные опытные факты; причем ему, естественно, приходится делать смелые и часто ошибочные предположения.
      Невольно закрадывается мысль, что метод гипотез привлекательнее, изящнее, чем метод принципов, и что большая наука должна идти именно таким путем. Впрочем, это риторический вопрос. Оба метода равно используются в научной работе. Вообще говоря, и сам Ньютон, как мы увидим в дальнейшем, часто прибегал к методу гипотез. Но его нелюбовь к ним вполне объяснима и имеет совершенно реальную основу.
      До Ньютона в ясной форме метод принципов, или, как часто говорят, индуктивный метод, не существовал. В научном мире бушевали гипотезы. Крупнейшие ученые века, посредственности от науки, полуграмотные невежды — все создавали системы; при этом каждый стремился объяснить ни много ни мало, как все известные явления природы. Физика гипотез осталась в наследство от греков, страстных любителей абстрактных рассуждений и домыслов. И лишь работа предшествующего Ньютону поколения отчасти подготовила почву для новых методов работы.
      Нужна была удивительная смелость и трезвость мысли, чтобы выскользнуть из плена очень привлекательной внешне физики гипотез и в основу творчества положить метод принципов, сухой, трезвый и сдерживающий полет фантазии.
      Но, может быть, прав С. И. Вавилов, считавший, что именно в выборе метода скрыт секрет вечного значения наследия Ньютона.
      Зная стиль строителя, рассмотрим само здание.
      Можно считать, правда, что Галилей и здесь отчасти предвосхитил Ньютона.
     
      ГЛАВА III,
      самая длинная во всей книге и, вероятно, самая трудная; в ней обсуждается теория измерений в физике
      НЬЮТОН. МЕХАНИКА
      (анализ основных понятий: длина, время)
     
      Смотри в корень!
      КОЗЬМА ПРУТКОВ
     
      Совершенно антипедагогичное замечание, которое молодым читателям не стоит принимать всерьез.
      Законы механики для человека нашего времени так же привычны и обыденны, как, например, электрическое освещение. Со школьной скамьи мы выносим непоколебимую уверенность в их идеальной строгости и безукоризненной понятости. И каждый школьник считает, что уж законы-то Ньютона ему известны и абсолютно ясны. Так ли это?
      Первая попытка более пристального рассмотрения убеждает, что эти радужные представления — результат милой детской непосредственности и невинности. Это, может быть, и не очень странно. В конце концов много ли можно требовать от школьника?
      Удивительным может показаться другое. До конца XIX столетия крупнейшие ученые, имена которых заслуженно блистают в золотой книге науки, не замечали, что среди основных положений ньютоновой механики есть, мягко говоря, довольно неясные утверждения.
      Это весьма поразительное обстоятельство оказывается вполне понятным, если вспомнить, что за двести с лишним лет, которые разделяют «Начала» Ньютона и тео-рию относительности Эйнштейна, механика так великолепно оправдывалась на практике, выросла в такое стройное грандиозное здание, что для физиков даже отдаленный намек на некоторую шаткость фундамента — законов Ньютона — выглядел как вздорная, вредная и опасная ересь.
      И в результате научный анализ подменила наивная и слепая вера — «вначале была механика, и Ньютон — творец ее». Можно повторить в оправдание, что в отличие от веры в дьявола вера в Ньютона каждый день подкреплялась реальными доказательствами. Но как бы то ни было, многие забыли, что основные положения механики сформулированы Ньютоном довольно нечетко. Математики не потерпели бы неясности в основах своей науки, а физики, грубо говоря, махнули на это рукой.
      Не стоит в связи с этим заключать, что физики «глупее» математиков. Просто по складу своего мышления математик прежде всего стремится к безупречной логической строгости, а физик обычно полностью удовлетворяется, если его теория хорошо описывает реальные явления, и, как правило, мало заботится о строгом определении «самоочевидных» вещей. Для физика XIX столетия, например, понятия длины и времени казались совершенно ясными. Для Ньютона тоже. Но Эйнштейн показал, что как раз в этих «простых», «очевидных» вещах совершенно отсутствовала ясность.
      После сказанного, естественно, возникают по меньшей мере два вопроса.
      Во-первых, каким образом вообще могли работать с законами Ньютона, если они, как мы утверждали, сформулированы довольно нечетко?
      Во-вторых, трудно все же поверить, что Ньютон — величайший Ньютон! — был так «наивен», как утверждалось выше. Не искажаем ли мы истину?
      Ответы на эти вопросы легко получить, если вспомнить о методе Ньютона. Он прежде всего стремился установить принципы, уловить, анализируя опытные данные, общий закон. Принципы нужны ему, чтобы в дальнейшем с их помощью исследовать явления природы. Как физик, он весьма недолюбливал рассуждения общего характера. Прежде всего его интересовали практические применения законов. Может быть, поэтому Ньютон сравнительно легко относился к проблеме логически безупречного определения основных понятий. Очевидно, это его просто не очень занимало.
      Главное — сформулировать законы настолько ясно, чтобы с ними можно было работать. Пусть принципы движения введены не идеально строго. Ньютона не очень заботит, что, например, понятие «масса тела» осталось, по существу, не определено, что ни слова не сказано о понятии «длина». Все равно каждому — не только физику, но любому смертному — ясно, что это такое.
      Он небрежно формулирует понятие «сила», как будто не замечая, что просто несколько другими словами перефразирует свой первый закон: «Приложенная сила есть действующее на тело стремление изменить его состояние, состояние покоя или равномерного прямолинейного движения».
      У него просто нет времени заниматься деталями. Ему нужно создавать механику, решать конкретные проблемы.
      Невольно складывается впечатление, что он стремится как можно скорее отделаться от докучливой работы по определению основных физических величин и перейти к делу. А систему аксиом механики пусть дополняют потомки.
      В одном он уверен: его законы дают возможность изучать и описывать все движения, известные человечеству, а для этой цели они сформулированы достаточно ясно.
      Можно высказывать различные мнения по поводу строгости обоснования механики. Можно считать, как думали до конца XIX века, что систематика Ньютона — лучшее из того, что может дать человечество. Можно, как мы убедимся далее, подвергнуть ее жестокой критике.
      Но одно несомненно. Более двухсот лет ни один опыт, проделанный физиками, не давал повода сомневаться в законах Ньютона. И что бы ни говорилось в дальнейшем, ни на минуту не следует забывать, что «вначале была механика, и Ньютон — творец ее».
      Прежде чем начать рассказ «без гнева и пристрастия», нужно сделать честное предупреждение.
      Последующие страницы с идейной стороны, пожалуй, самый сложный раздел нашей беседы. Они могут показаться и утомительными и скучными. Но, к сожалению, чтобы понимать дальнейшее и главное, чтобы понять идеи Эйнштейна, их необходимо прочесть.
      Сначала взглянем на сами законы — аксиомы механики Ньютона.
      Здесь автср высказал свое собственное мнение, и потому к этому отрывку следует отнестись с сугубой осторожностью
      Намечается программа, выполнение которой займет три главы.
      коя или равномерного прямолинейного движения, пока и поскольку оно не принуждается приложенными силами изменить это состояние.
      2. Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
      3. Действие всегда равно противодействию, или иначе — действия двух тел друг на друга равны и противоположно направлены.
      Так их сформулировал Ньютон, такими мы узнаем их в школе. Впрочем, пока не определены основные физические понятия, использованные в них, законы механики так же содержательны и ясны, как, скажем, загадочные письмена индейцев племени майя.
      Было бы наивно думать, что Ньютон не сознавал этого. Системе аксиом (своим законам) он предпосылает систему определений основных понятий. Но... уже упоминалось — систематика Ньютона неудачна. В ней кое-что лишнее, кое-чего недостает, а есть и неправильные или бессодержательные утверждения. К сожалению, впереди так много работы, что взгляды самого Ньютона мы рассмотрим только попутно, не останавливаясь на их детальном разборе.
      Итак, какие основные понятия, используемые в аксиомах механики, подлежат определению и анализу?
      Прежде всего понятия длины и времени. Далее — понятие движения. Затем — понятие силы. И наконец, понятие массы.
      Кроме того, будет дано определение ско- рости и ускорения. А после этого мы проанализируем законы механики и попытаемся возможно более четко определить их физическое содержание. Такова программа.
      Но прежде чем перейти к ее выполнению, необходимо сделать последнее замечание. Наша задача — не давать идеальные и общие определения, отнюдь нет! Мы просто стремимся понять физический смысл принципов Ньютона и по возможности ясно представлять себе, какое физическое содержание скрыто за теми символами и понятиями, которые мы используем.
      Начнем с длины (расстояния).
      Вопрос «Что такое длина?» Ньютон обходит молчанием. И напрасно. Этот вопрос продиктован не праздными выдумками хитроумного схоласта. Это вполне реальная физическая задача. Причем мы рассмотрим проблему чисто утилитарно. Мы хотим знать, как на практике определять расстояние между двумя точками или длину физического тела.
      Первая «неожиданность» — определение длины.
      К счастью, вопрос об определении длины столь же касается геометров, как и физиков, и потому строгое математическое определение существует. (Математики не терпят никакой неопределенности.)
      Определение. Длиной отрезка называется число, которое сопоставляется с каждым отрезком посредством процесса измерения.
      KOHEЦ ФPAГMEHTA КНИГИ

 

 

НА ГЛАВНУЮТЕКСТЫ КНИГ БКАУДИОКНИГИ БКПОЛИТ-ИНФОСОВЕТСКИЕ УЧЕБНИКИЗА СТРАНИЦАМИ УЧЕБНИКАФОТО-ПИТЕРНАСТРОИ СЫТИНАРАДИОСПЕКТАКЛИКНИЖНАЯ ИЛЛЮСТРАЦИЯ

 

Яндекс.Метрика


Творческая студия БК-МТГК 2001-3001 гг. karlov@bk.ru