На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека

Как собрать кубик Рубика (журнальная подборка).  — 1982 г

журнальная подборка

Как собрать кубик Рубика

ПОШАГОВЫЕ АЛГОРИТМЫ

*** 1982 ***


PDF




От нас: 500 радиоспектаклей (и учебники)
на SD‑карте 64(128)GB —
 ГДЕ?..

Baшa помощь проекту:
занести копеечку —
 КУДА?..



      ПСИХОЛОГИЧЕСКИЙ ПРАКТИКУМ
     
      А ВСЕ-ТАКИ, КАК ЕГО СОБРАТЬ?
     
      «Невозможно иметь изолированный кварк (или антикварк). Кварки не могут существовать свободно, но они могут существовать объединенными в группы: пара кварк-антикварк является мезоном, а трио кварков с целым зарядом является барионом...
      Возникает вопрос: какая последовательность операций приведет к мезону или бариону, если известно, что возможными являются комбинации кварков исключительно с целой величиной суммы поворотов?..»
      Приведенная цитата — не из статьи об элементарных частицах, она взята из статьи о головоломном «венгерском кубике», напечатанной в научно-популярном журнале «Сайентифик американ». «Головоломку века» не обошел своим вниманием, пожалуй, ни один научно-популярный журнал — ни «взрослый», ни «детский». С одной стороны, терминология новейшей физики, употребление понятий математической теории групп, а с другой — соревнования школьников на быстрейшую сборку кубика (эти соревнования даже промелькнули небольшим сюжетом по первой программе центрального телевидения). С одной стороны, наглядная модель для демонстрации сложнейших математических понятий, с другой — демонстрация виртуозного владения геометрическим воображением и логическим мышлением: школьники на ваших глазах собирают куб всего за 30 секунд! (Рекорд — 25,79 сек.). Мне показалось, что ребята с таким же успехом могли бы «работать» и с закрытыми глазами. Нам, конечно, далеко до них, но от этого головоломка не становится менее интересной. Тем более что ею можно заниматься, ставя все новые и новые задачи. Однако прежде всего попробуем выполнить просьбу многих читателей: дать последовательные этапы «сборки» кубика.
      Определились два совершенно различных подхода к сборке: «абстрактный» и «конкретный». В первом случае используются многоходовые процессы, которые, казалось бы, не вносят порядка в хаотически разбросанные кубики до последних нескольких ходов. Так поступает М. Тэйстлетуайт — специалист по прикладной математике из Лондона. Он использовал «идеи математической теории групп для компьютерных исследований так называемых превращений особого рода». Вместо того чтобы поставить на свое место, или, как говорят еще, «посадить в седло» определенные классы кубиков, он делает «спуск через подгруппы». Как это он делает, мы не знаем, но суть в том, что сначала с полной свободой делают несколько ходов-поворотов и останавливаются на таких типах ходов, которые впредь будут возможны (разрешены), затем делается еще несколько ходов и опять следует закрепление на каком-либо типе ходов и так далее, пока ограничения не станут такими, что ходов больше сделать нельзя. Это и есть момент полной сборки куба.
      Подобное объяснение, пожалуй, сродни известному рассуждению математика о том, как поймать льва в пустыне: «Возьмем пустыню. Поделим ее на две части. В одной— лев, в другой —нет. Ту, в которой лев, снова поделим на две части и так далее, пока область со львом не станет настолько мала, что делить и отбрасывать уже будет нечего: тут и лев! Сплошная абстракция, но тем не менее «лев» оказывается пойманным: Тэйстлетуайту принадлежит мировой рекорд самого короткого алгоритма приведения куба в порядок — всего 52 поворота.
      Конкретный или последовательный метод сборки куба более понятен и приемлем для любителей, Д. Макдональд из Стэнфордско-го университета применяет такой метод: сначала собирается верхний слой без одного углового кубика, место которого (седло, гнездо) вместе с двумя другими седлам;; вертикального углового ряда используется в качестве «подъездного пути». Два оставшихся слоя собираются посредством перевода кубиков с «подъездного пути» и обратно на него...
      Доктор физико-математических наук В. А. Залгаллер (г. Ленинград) дал описание метода, при котором сначала собираются «борта»—12 бортовых кубиков, а затем «углы» — 8 кубиков.
      И, наконец, есть еше метод послойной сборки куба, суть которого состоит в том, что сначала собирается верхняя грань (верхний слой), затем средний слой и, наконец, нижний. После завершения каждого процесса беспорядок уменьшается. Мы получаем ряд последовательно фиксированных состояний куба с постоянно наблюдаемым приближением к упорядоченному состоянию.
      Но прежде чем перейти к описанию этого алгоритма — несколько замечаний.
      В статье «Венгерский кубик» («Наука и жизнь» № 3, 1981 г.) мы просили читателей придерживаться в переписке системы обозначений, принятой в журнале. Эта система международная, она нам кажется простой и удобной как для запоминания, так и для записи. Вместе с тем многочисленные зарубежные публикации, а также почта наших читателей позволили внести в систему обозначений некоторые усовершенствования и дополнения. Так, вместо индекса «—1», отмечающего левое вращение грани (против часовой стрелки), будем употреблять индекс «штрих» «'», то есть Ф-1 = Ф'.
      Рационально во многих случаях отмечать операцию «вращение среднего слоя» С. Например, Сп — вращение среднего слоя со стороны правой грани. Эту операцию удобно выполнять так. Правой рукой поворачиваем на 90° по часовой стрелке сразу Два слоя, два «ломтика» — правый и средний, а затем возвращаем на место один правый слой, сделав поворот П'. В результате средний ломтик окажется повернутым на 90° по часовой стрелке. Таким же образом выполняется С-поворот со стороны любой другой грани. Процессы ПЛ', ВН' и подобные им, по сути дела, тоже являются поворотом среднего слоя, но с сохранением ориентации центрального кубика и ориентации куба. Иначе говоря, Сп = П'Лх, а С'п = Л'Пх', где х — элементарная операция «поворота куба на 90° по оси X».
      Очень наглядна и удобна матричная форма записи процессов, где элементарные операции-повороты изображаются рисунками фасадной грани, с соответствующими стрелками.
      Ячейки матрицы можно использовать при этом для дополнительных пометок.
      А теперь собственно о методе послойной сборки. Мы изложим его, ориентируясь на программу, получившую наибольшее распространение.
      Первый этап — «верхний крест». На свои места устанавливаются четыре бортовых кубика, принадлежащих верхнему слою. Сориентируем куб так, чтобы впереди оказалась выбранная вами грань, и зафиксируем это.
      Расположение бортового кубика, принадлежащего фасадной и верхней граням в кубе (кубик фв), может быть сведено к пяти основным ситуациям. Сориентировав куб надлежащим образом, выводим нужный кубик на фасадную грань и одной из пяти приведенных операций переводим его на свое место. Выберем для начала фасад синий, верх белый. Тогда справа будет, например, оранжевая грань, слева — красная, сзади — зеленая (цвет зависит от фабричной расцветки куба). Первым кубиком фв, поставленным на место, будет кубик сб — си-не-белый. Затем, согласно формулам приведенных операций, ставятся на свои места кубики об, кб и зб оранжевой, красной и зеленой граней. Результатом первого этапа будет крест на верхней грани куба, составленный из четырех бортовых кубиков и центрального кубика грани.
      Второй этап—«углы верхнего слоя», или просто «углы». Ставим на место кубики фвп, фвл, твп и твл. Выводим на фасадную грань в левый нижний угол нужный кубик, например, фпв — сине-оранжево-белый. Он может занять одно из трех возможных положений. Соответствующим процессом переводим кубик в правый верхний угол. Он займет там свое место и будет правильно ориентирован.
      Точно так же поступаем, выбрав в качестве фасадной грани не синюю, а оранжевую, зеленую или красную. Верхний слой будет собран полностью.
      Третий этап — «пояс» — сборка среднего слоя. Ставим на место его бортовые кубики. В нашем примере, когда вверху белая грань, фасад синий, правая грань оранжевая, это будут кубики: сине-оранжевый,
      сине-красный, оранжево-зеленый и краснозеленый. Поворачивая нижний слой, приведем куб к одной из двух стандартных ситуаций, показанных на рисунке: перемещаемый кубик занимает место фн. Обратите внимание: цвет его фасадной грани должен совпадать с цветом центрального кубика фасадной грани куба. В зависимости от того, какого цвета грань оказалась внизу, переводим этот кубик направо или налево на грань соответствующего цвета одной из двух указанных операций.
      Может" оказаться, что все четыре искомых кубика находятся в среднем слое, но неправильно ориентированы. В этом случае теми же операциями сначала переводим их в нижний слой, а затем и на свое место.
      Четвертый этап — «крест для нижней грани».
      Для удобства перевернем куб собранным слоем вниз. Сверху окажутся все кубики несобранного слоя, но не на своих местах. Подберем сначала бортовые кубики". В нашем примере это кубики жс, жо, жз, жк — желто-синий, желто-оранжевый, желто-зеленый и желто-красный.
      Возможно использование различных процессов, но с одним ограничением: не разрушать уже собранные два слоя. Такому ограничению соответствуют, например, два процесса, один из которых меняет местами два кубика, а другой — переворачивает нужный кубик.
      В первом случае два указанных на рисунке кубика не только меняются местами: один из них (верхний левый) еще и переворачивается, меняя ориентировку.
      Если верхняя грань желтая, фасад синий, слева — оранжевая грань, то в ситуации «впереди кубик оранжево-желтый (желтой гранью вверх), а слева вверху желто-синий (синяя грань вверху)», этот процесс поставит оба кубика на свои места. При этом будут затронуты еще 4 кубика того же слоя, но на данном этапе это не должно нас волновать. Однако здесь надо заметить: выбор цвета фасадной грани (ориентация куба) перед началом четвертого этапа производится с учетом того, что кубик тв остается на месте, а кубик пв, оставаясь на месте, меняет ориентировку. Кубики фв и лв меняются местами, причем фв сохраняет ориентацию, а лв «опрокидывается».
      Возможно, что операции 4-го этапа придется проделать два — четыре раза, пока все 4 кубика не сядут в свои гнезда. При этом может оказаться, что все четыре ориентированы неправильно, или два кубика окончательно стали на свои места, а два других, хоть и займут места в своих гнездах, но будут неверно ориентированы.
      Правильной ориентации их можно достигнуть с помощью процесса (ПСН)4
      Пятый этап — «ориентация бортовых кубиков последней грани».
      Расположим куб так, чтобы любой из неверно ориентированных кубиков оказался справа вверху (занял гнездо пв). Сделаем 8 указанных поворотов. Кубик должен развернуться и стать правильно. Не огорчайтесь, что нарушился порядок в ниже лежащих слоях: все будет исправлено.-Поверните верхнюю грань (только верхнюю грань, а не весь куб!) так, чтобы место справа вверху занял другой неверно ориентированный кубик, и повторите указанный процесс. Второй кубик займет правильную позицию, а нижние слои вновь будут упорядочены.
      В результате на верхней грани будет собран крест — бортовые кубики окажутся на своих местах. Проверьте совпадение цвета слоев по всему кубу, возможно, придется повернуть верхнюю грань.
      Шестой этап — «углы последней грани».
      В результате предыдущей операции может оказаться, что ни один угловой кубик не займет своего места. Тогда все четыре надо переместить в свои гнезда, пусть и неправильно ориентированно. Этого можно достичь 22-ходовым процессом. Проделайте его. Если ни один кубик при этом еще не уселся в свое гнездо, то следует повторить процесс.
      Как только вы увидите, что какой-либо угловой кубик сел на свое место и правильно сориентировался, поверните куб так, чтобы этот кубик оказался на тыльной грани слева (см. рис.). Теперь можно снова повторить 22-ходовую операцию один, а возможно, и два раза.
      Седьмой этап — «ориентация угловых кубиков последней грани».
      Кубики заняли свои гнезда. Но два из них или даже все четыре могут оказаться несориентированными.
      Указанный 8-ходовой процесс поворачивает «плохой» кубик, помещенный в правый угол фасадной грани по часовой стрелке на 1/3 оборота, и возможно, что этот процесс придется повторить еще раз. На рисунке это отражено индексом «п».
      Внимание! Процесс затрагивает все слои куба — не ошибитесь, иначе все придется делать с самого начала. Чтобы развернуть следующий кубик, его надо сначала поворотом одной лишь верхней грани (операцией В', В или В2) поместить в правый верхний' угол фасада и вновь повторить восьмихо'-довку. Теперь остался всего один «плохой» кубик. Поворачивая лишь верхнюю грань, поместите его в правый верхний угол и снова тем же процессом (8 или 8x2 ходов) сориентируйте его. Остался заключительный ход: поворот верхней грани, и все — куб собран.
      Предложенный алгоритм не единственный. Вот некоторые предложения, взятые нами из читательской почты.
      Е., Н. и В. Довгошей (г. Ужгород) сообщают, что у них в городе получила распространение такая система упорядочения кубика. (...)

 

 

 

От нас: 500 радиоспектаклей (и учебники)
на SD‑карте 64(128)GB —
 ГДЕ?..

Baшa помощь проекту:
занести копеечку —
 КУДА?..

 

На главную Тексты книг БК Аудиокниги БК Полит-инфо Советские учебники За страницами учебника Фото-Питер Техническая книга Радиоспектакли Детская библиотека


Борис Карлов 2001—3001 гг.