СОДЕРЖАНИЕ
КАК ЧЕЛОВЕК УЧИЛСЯ ИЗУЧАТЬ ПРИРОДУ
Бесстрашие на заре
Как ищут истину … 7
Великая сила «пустякова… 11
Ненасытность науки …14
Труднее или легче сегодня изучать науку? …18
Ненасытность разума … 24
Открытия не умирают …28
Наукой должны заниматься только честные, добрые люди …31
КАК ПРИБЛИЖЕННЫЕ ПРЕДСТАВЛЕНИЯ О ДВИЖЕНИИ СТАНОВИЛИСЬ ВСЕ ТОЧНЕЕ
Почерк природы …
Истинность предметных представлений …40
Аристотель и Галилей 44
Быстрый разумею …48
Законы Ньютона … 49
«Покорный вектор» — величайшее изобретение человечества 60
Тяготение в элементарном смысле…69
«Вождь Великой Относительности» …73
Ограниченность классической механики…75
КАК ПОЗНАВАЛИСЬ ЗАКОНЫ И ОТКРЫВАЛИСЬ ТАЙНИКИ ЭНЕРГИИ
Путаница и разъяснение понятий,…80
Превращение энергии
Красный цвет…
Три качества… 93
Спектр энергии…
Беспорядок, который нас пугает, а должен бы, напротив, радовать … 111
ЧЕТЫРЕХ СТИХИЯХ
Облаканачало й примитив всего…118
Твердое — первое состояние вещества…126
Жидкое — второе состояние вещества…132
Газообразное — третье состояние вещества…138
Плазменное — четвертое состояние вещества…140
Волшебный вкус квинтэссенции…143
КАК ЧЕЛОВЕЧЕСКАЯ МЫСЛЬ ПРЕОДОЛЕЛА БАРЬЕР НЕВИДИМОГО МИРА
Масштабные эффекты…150
Три бесконечности учения о мерах …156
В мире квантов…157
С. И. Вавилов и предвидение открытий…169
Рубиновая молния…171
За символами математики…185
Человек, теория относительности и космос…190
КАК ЗАКОНЫ СОХРАНЕНИЯ ПОДНЯЛИ ПРЕСТИЖ НЕИЗМЕННОГО В ПРИРОДЕ
Постоянное в потоке 196
Галерея генералиссимусов…199
Законы сохранения и симметрия мира…202
Возвращение чародея…204
ИЗДАНИЕ ВТОРОЕ, ИСПРАВЛЕННОЕ И ДОПОЛНЕННОЕ
Научный редактор доктор физико-математических наук профессор И. Г. ШАПОШНИКОВ, зав. кафедрой теоретической физики Пермского университета
БЕССТРАШИЕ НА ЗАРЕ
Когда человек еще не был человеком, а был диким зверем, на него ополчилась вся природа. Не найти в те времена существа несчастнее человека. Лишенный острых клыков и когтей, не имеющий массивных рогов или копыт, он был слабее хищников. Он даже не мог убежать от них, так как не умел быстро бегать. Детство — самый нежный и самый хрупкий период жизни — у него протекало гораздо дольше, чем у других животных, и он в тот период легко становился добычей тигров.
На человека восстали и стихии, от них он тоже был почти ничем не защищен. По злой иронии судьбы, в отличие от других животных, у него шерсть покрывала больше грудь, чем спину; уткнув в колени лицо, кочевник доисторических времен дрожал и вскрикивал во сне от леденящих ветров. Он слишком медленно убегал от стихийных бедствий. Птица улетала при землетрясении, таежный зверь, почуяв запах гари, проворно находил дорогу к спасительному водоему. Движения же человека были замедленны. Они замедлялись и слабостью мышц и силой его любви к детенышам, которых он никогда не бросал в несчастье. Человеческая любовь к семье и роду всегда была сильнее смерти.
Нельзя сказать, чтобы стремительные и точные движения его врагов не вызывали в человеке никаких защитных реакций. Существует так называемый закон Карпентера (по имени английского, физиолога прошлого столетия Уильяма Бенджамена Карпентера), по которому всякое восприятие движения или даже только, представление о движении вырабатывает в человеке слабый импульс (толчок, позыв) к совершению данного движения. Но этот импульс не мог развить в нашем предке физической силы, достаточной для того, чтобы противостоять врагам.
Все слабое в природе отмирает. Отмер бы й человек, не обладай он замечательными родовыми свойствами — бесстрашием и живостью воображения.
Благодаря бесстрашию он не пришел в отчаяние от невозможно тяжких невзгод своей жизни. Любое высокоорганизованное животное впадает в панику и при меньших натисках стихий, а человек, казалось обреченный бесповоротно, продолжал искать спасения, пока действительно не нашел его. Ценой неслыханного терпения он обнаружил его в труде. Научившись создавать искусственные органы защиты, он быстро убедился, что они надежнее естественных.
Обладатель гибкого ума, человек в конце концов догадался, что в действительности сильна не сила, а умение управлять ею, способность вызывать или сдерживать ее в нужном направлении. Копье — пустяк, пока оно не в руках охотника, а с ним человек сильнее мамонта. Ветер — бесполезная стихия, но, направив его на паруса, люди без плавников и крыльев стали преодолевать просторы океана.
В сущности, человек открыл как бы новую силу природы. Эта сила называется умом и скрывается в сознании человека. Когда люди поняли ее значение, они стали говорить: «Сильный победит одного, умный — тысячу». Необычность новой силы не только в том, что она самая могущественная, но и в том, что, в отличие от всех других сил, ее надо искать не в потоках воды и не в жарком пламени, не в чудесных превращениях химических веществ и не в сокращении мускулов. К уму, к умению управлять силами приходят через познание законов природы, через поиски научной истины.
Многим почему-то кажется, что сам по себе процесс такого рода поисков ничего особенного не представляет: думай, ломай голову и находи! Нет ничего ошибочнее подобной точки зрения. Шахтеры, чтобы выдать уголь на-гора, применяют сложный инструмент — от отбойных молотков до хитроумнейших комбайнов. Человек, пытающийся познать закон природы, добьется результата только в случае, если овладеет своим специальным инструментом — научным методом.
Он отличается от созданных руками человека. Но, как всякий инструмент, и этот развивался с течением веков.
Метод поисков истины, которым пользуются ученые наших дней, весьма и весьма отличен от метода первобытных добытчиков знаний.
КАК ИЩУТ ИСТИНУ
Человек извечно тяготился границами, в которых жил, и всячески старался их раздвинуть. Стремление к Неведомому, к познанию того, что находилось за пределами родного места — дома, области, планеты, — всегда было одним из самых его сильных чувств.
Сперва он просто смотрел по сторонам и цепко запоминал чувственно доступную ему природу. Мир открывался ему в предметах, ни происхождения, ни причин движения которых он и не пытался объяснить. Вернее, он все сводил к действию туманных сил — воли богов и демонов,- и это его вполне удовлетворяло.
Но потом родилась наука. Люди, занимавшиеся ею, старались объяснить явления природы естественными причи-
нами. Для этого надо было искать истину, пользуясь определенными правилами, а не рассчитывая на внезапное озарение.
Одно из самых первых правил ученых гласило: «Наблюдай!»
Наблюдение — очень важный метод науки, без него нельзя представить себе ее развития. Но ведь одного этого — наблюдать — мало, чтобы найти истину. Надо еще сделать правильные выводы из наблюденного.
Живя в деревне, можно ежедневно наблюдать, что после крика петуха восходит солнце. Но ведь не придет же никому в голову сделать вывод: «Солнце восходит оттого, что пропел петух». Это так же абсурдно, как уверять, будто буря на море поднимается из-за того, что морской царь Нептун гневается или, напротив, пляшет. Человек, создавший «петушиную теорию» восхода солнца, должен немедленно заключить, что, когда петуху свернут шею, солнце больше не поднимется.
Скажем так: метод наблюдения хорош, но лишь тогда, когда им пользуются с умом и толково.
Распространенным методом отыскания истины является обращение к авторитету, то есть к старшим, или к более опытным, или к более образованным людям. Сам по себе этот метод неплох, как и метод наблюдения. Человечество пользовалось им с незапамятных времен, пользуется и поныне. Школьники, студенты, все вообще любознательные люди наполняют кладовые своих знаний главным образом с помощью авторитетов.
В то же время в методе обращения к авторитету кроется и наибольшая опасность. Основной, его недостаток в том, что он ставит познающего в полную зависимость от предполагаемых знаний поучающего. А тех знаний в действительности может и не быть.
Не всегда «авторитет» оказывается на высоте. Ведь и поныне кое-кто обращается к знахарям и гадалкам, а разве то, что те говорят о будущих судьбах людей, разве их рецепты излечения с помощью заклинаний и колдовства — правда?
Да что там знахари и гадалки! Сколько известно случаев, когда почтенные и много сделавшие для науки люди вдруг в чем-то оступались, утверждали заведомо неправильное, а ослепленные их авторитетом последователи повторяли это.
Великий греческий философ Аристотель (384 — 322 гг. до и. э.) сказал, например, что у мухи четыре ноги. И почти две тысячи лет все, кто чтил Аристотеля (а его чтил весь образованный мир), вопреки очевидности упорно утверждали то же самое.
Недостатком метода обращения к авторитету является и то, что он не очень-то располагает к творческому мышлению, не толкает к «шевелению мозгами». Пользоваться им всегда — это все равно что не решать самому задачи, а сразу списывать готовый ответ из учебника.
Многие убеждены, что лучшим способом находить истину является обращение к здравому смыслу. Само по себе это утверждение протеста не вызывает, оно вполне разумное. Беда в том, что многие расходятся во мнениях насчет того, что понимать под здравым смыслом.
Спросите, например, домохозяйку: «Сколько будет 20 миллиардов сантиметров в секунду плюс еще 20 миллиардов сантиметров в секунду?» Голову можно отдать на отсечение, что из ста домохозяек девяносто девять ответят: «40 миллиардов сантиметров в секунду». Так им подсказывают их здравый смысл и знания, полученные в школе. А физик высмеет такой ответ. Он скажет: «Не 40, а только 27,3 миллиарда сантиметров в секунду». И без труда докажет, что он прав, потому что его ответ вытекает из здравого смысла современной физики. Он сошлется на главу современной физики, называемую «Теория относительности», а та исходит из законов природы, многократно проверенных учеными. Сомневающимся такой физик скажет: «Ведь «здравый смысл» является продуктом человеческого разума, и совсем не обязательно Мать-Природа должна быть устроена именно так, как о ней думают люди» (пример со сложением скоростей и цитату я заимствую из книги американского физика Дж. Орира «Популярная физика»).
Так как же все-таки искать истину? Что в наши дни надо признать самым надежным, самым верным методом науки?
Ответ не односложен. В общем-то, он сводится к тому, что всего надежнее пользоваться сочетанием всех методов: это
позволит избежать или сократить недостатхш каждого из них в отдельности. Начинать надо с создания достойного теоретического предположения (гипотезы), а закончить обязательно многократной и убедительной практической проверкой.
Подытоживая, скажем. Если,ты пожелал найти какую-то неизвестную пока тебе научную истину, ищи ее в такой последовательности:
начни с того, что четко сформулируй свою задачу; сам для себя ответь, что именно тебя интересует, что ты решил узнать;
затем приготовь свою гипотезу; не обязательно тебе придумывать ее целиком: ты можешь обратиться и к авторитету ;
затем подумай и получи ответ на вопрос (вот тут-то уж потребуется твоя максимальная самостоятельность): что будет, если ты поставишь опыт и действительно окажешься прав? Как это выразится в опыте? Составь, короче говоря, прогноз; практически проверь гипотезу. Для физической или химической задачи это будет эксперимент; в математике — написание верного уравнения и решение его в истории — соответствие полученных выводов всем другим перекрещивающимся свидетельствам истории, и т. д.
получив практический ответ,, сравни его со своим прогнозом сделай окончательный, четкий и совершенно честный вывод: прав ли был ты в своих теоретических предположениях или не прав? Если нет, начни сначала, но сперва построй уже другую гипотезу (может быть, и не очень сильно отличающуюся от первой).
Главное, ты должен помнить: чтобы все поверили в твое «открытие» (особенно если оно — открытие и для других), ты должен доказать на множестве примеров, что все практические результаты, когда бы и кто бы их ни получал, не противоречат твоим выводам. Тут невозможны никакие компромиссы. Нельзя сказать: «Сто результатов подтверждают мои выводы, не подтверждает лишь один, но это ведь пустяк!»
Одного-единствекного «пустяка», не согласующегося с выводами «теории», вполне достаточно, чтобы пустить ее под откос. Дело в том, что природа не знает пустяков. Все в ней происходящее всегда полно глубокого, большого смысла, всегда отражает более или менее непосредственно какую-то фундаментальную закономерность.
ВЕЛИКАЯ СИЛА «ПУСТЯКОВ»
У Леночки Казаковой может оторваться пуговица от платья, но она от этого не перестанет быть Леночкой Казаковой. Законы науки, особенно законы физики, не допускают ни малейшего неряшества. Воспользовавшись аналогией,
можно сказать, что законы физики всегда должны быть застегнуты на все пуговицы, всегда быть предельно аккуратны. Отличительная особенность каждого из них заключается в том, что если он имеет хотя бы одно-единственное, на первый взгляд пустячное, нарушение, то это является абсолютным доказательством, что он не может называться, в рамках принятой схемы изучаемых явлений, законом физики.
«Наш взгляд на мир потребует пересмотра даже тогда, когда масса изменится хоть на капельку, — говорит американский физик Ричард П. Фейнман. — Это — характерное свойство общей картины мира, которая стоит за законами. Даже незначительный эффект -иногда требует глубокого изменения наших воззрений».
Было время, когда атомы считали неделимыми частицами материи. Великий английский физик Исаак Ньютон говорил, что они так тверды, что никогда не износятся и не сломаются на куски. Соотечественник Ньютона — химик Джон Дальтон уверял в 1807 году, что атомы неделимы, вечны и неуничтожаемы. Но достаточно было супругам Марии и Пьеру Кюри открыть редчайший на Земле элемент — радий, атомы которого, самопроизвольно взрываясь, выбрасывают из себя два сорта частиц (альфа и бета) и лучи гамма, как все прошлые представления о Неделимости атомов пошли насмарку. Теперь мы твердо знаем, что все существующие в природе 88 элементов, и все полученные искусственно 16 элементов, и все другие элементы, которые еще будут созданы, состоят из более мелких частиц и могут превращаться один в другой. Одно-единственное свидетельство делимости атома на примере редчайшего элемента доказало сложность строения всех атомов вообще.
Вряд ли будет преувеличением сказать, что за любым явлением природы таится нечто очень важное и большое. Если этого явления никто раньше не наблюдал, если его воспроизвели, обнаружили искусственно, значит, какой-то проницательный ум раскопал в недрах Неведомого новую, обязательно очень ценную книгу о природе — книгу, которую потом будут читать и разбирать поколения ученых. Честь и хвала находчику наиредчайшего явления! Нет подвига более значительного в науке, чем открытие такого рода.
Замечательный английский экспериментатор и великий труженик науки Майкл Фарадей (1791 — 1867) читал однажды лекцию в Королевском институте в Лондоне. При этом он подносил к катушке проволоки магнит и показывал, что в катушке возбуждается чуть заметный электрический ток.
«Профессор, — спросила его после лекции одна из слушательниц, — но если даже такой слабый ток и возникает, какое это может иметь значение?»
«Мадам, — галантно ответил ей ученый, — можете ли вы предсказать судьбу новорожденного ребенка?»
В 1900 году, выступая на банкете с речью, посвященной началу нового столетия, английский физик Уильям Томсон (он же лорд Кельвин) говорил о ясном физическом небосводе, который омрачают только два ничтожных облачка: так называемые «отрицательные результаты оптических опытов американских исследователей А. Майкельсона и Е. Морли» и другое явление в науке, известное как «ультрафиолетовая катастрофа».
Не будем останавливаться подробно на сути омрачающих событий. Заметим лишь, что опыты Майкельсона и Морли, начатые в 1881 году, имели целью установить, влияет или не влияет на скорость света (относительно Земли), посылаемого фонарем во все стороны, движение самого фонаря, закрепленного на поверхности Земли и потому летящего в мировом пространстве со скоростью планеты (оказалось, что не влияет ; отсюда: «отрицательные результаты оптических опытов»).
Что касается «ультрафиолетовой катастрофы», то здесь речь шла об одном долго не разрешавшемся противоречии: физика тех лет считала, что энергия делима на любые части, может быть сколь угодно малой, а результаты опытов по тепловому излучению так называемого абсолютного черного тела могли быть объяснены лишь, если допустить, что энергия «зерниста», состоит из очень маленьких и дальше неделимых «атомов энергий» — квантов.
Для нас сейчас интересно, что эти два «ничтожных облачка» породили целый шквал. Теории, возникшие сперва для устранения «пустячных» противоречий старой физики («теория относительности» и «квантовая механика»), потом, развившись, революционизировали и совершенно преобразили физику. «Карлики» оказались могучими титанами, перевернувшими все научное мышление людей.
Последний пример возьмем из области физических законов, известных под названием «законы сохранения».
Среди этих законов есть малоизвестный широкой публике закон сохранения четности. Его суть можно изложить примерно в следующих выражениях. Представьте, что вас привели в закрытую маленькую комнату, на одной стене которой укреплено превосходно сделанное зеркало, а прямо против него в другой стене прорублено таких же размеров, как зеркало, окно. За окном молчаливый лаборант ставит какой-то — любой! — физический опыт. Так как окно окаймлено такой же рамкой, что и зеркало, то вы не можете догадаться, с какой стороны реальный опыт за окном, с какой — его зеркальное отражение. С утверждением о том, что вы принципиально не сумеете отличить реальности от отражения, и связан закон сохранения четности.
Но вот в 1956 году два американских физика, Ли Чжэнь-дао и Янг Цзуннин, показали теоретически (а несколькими месяцами позднее их теорию подтвердила и практически американка профессор By), что есть, по крайней мере, один «пустяковый» случай, когда закон сохранения четности не соблюдается. Это происходит при распаде некоторых радиоактивных ядер, сопровождающемся испусканием электронов. Оказалось, что электроны вылетают преимущественно в одну сторону по отношению к так называемому собственному вращению ядра. Значит, посмотрев на это явление и на его отражение в зеркале, можно сказать точно: «Вот это — настоя-
щий, реальный опыт, а это — всего лишь отражение его в зеркале».
Редчайшее нарушение фундаментального закона! А его, этого нарушения, оказалось достаточно, чтобы «убить» целиком закон, во всяком случае показать его ограниченность.
Открытие Ли и Янга потрясло весь ученый мир и было признано столь значительным, что в следующем же году обоим физикам присудили высшую научную награду Западного мира — Нобелевскую премию.
НЕНАСЫТНОСТЬ НАУКИ
Отсутствие пустяков, существенность любого, хотя бы наиредчайшего и самым слабым образом выраженного явления — таков окружающий нас мир в глазах науки. Уважение к «мелочам» — одна из важных ее особенностей. Другая важная особенность науки наших дней — взгляд на мир как на необъятное поле поисков. Отсюда ее всевозрастающая активность, ее стремление развернуть на этом поле побольше работ, побольше вбить заявочных столбиков.
В огромной степени, надо думать, вторая особенность науки вытекает из первой, является ее неизбежным следствием; когда серьезно относишься ко всему, тогда мир для тебя богаче красками. Выбирай любой оттенок, посвящай себя тому, к чему у тебя лежит сердце; если твое призвание быть ученым, ты убедишь всех, что избранная тобой дорога — дорога не в никуда, а к благодатной цели.
От обилия дорог в науке — обилие хороших условий для утоления различных творческих симпатий, от утоления симпатий — хорошие научные результаты.
Сегодня часто приходится слышать, что рост научных результатов напоминает рост лавины. Веками наука развивалась еле-еле, как будто, одинокий камень катился с пологой горы, то замирая на одних участках, то незначительно
ускоряясь на других. И вдруг все переменилось. Словно увеличилась крутизна, определяющая движение. Одно открытие стало порождать два, три, множество других; от скромного числа объектов изучения (химических веществ, биологических видов и т. д.) отдельные науки перешли к большим их совокупностям.
Вот несколько примеров. В эпоху Аристотеля было описано 454 вида животных. Сегодня известно более полутора миллионов животных видов и известно также, что на Земле еще предстоит открыть примерно два миллиона видов.
Древние греки и римляне знали лишь одну кислоту — уксусную — и семь металлов: золото, серебро, медь, железо, олово, ртуть, свинец. Теперь только естественных, встречающихся в природе веществ открыто более трех тысяч. Еще около трех с половиной миллионов химических соединений получено искусственно. И количество тех и других все время растет, особенно искусственных в области химйи высоких полимеров: искусственных волокон, пластмасс, каучуков.
Все ускоряясь и усложняясь на первый взгляд, надвигаются на человеческий ум новые понятия, рожденные в кабинетах и лабораториях ученых. Тысячелетиями люди имели дело лишь с явлениями, которые раскрывала перед ними сама природа. Каких-нибудь полтораста лет назад они почти ничего не знали об электричестве; только с начала нашего века стали догадываться о тайнах атома; о звуковом кино и о телевидении стали думать как о реальностях лишь в конце 30-х — начале 40-х годов; а о квантовых генераторах и о космических полетах первые сообщения появились только несколько лет назад.
Даже выдающиеся физики с полвека назад с трудом представляли себе элементарные частицы. Великий датский ученый Нильс Бор во время своей последней поездки в Москву признавался на встрече со студентами университета:
— Когда Эйнштейн ввел понятие «фотон», мы долго не могли понять, что это значит.
А теперь, когда таких частиц открыто больше двухсот, на повестке дня еще одна ступень в глубь материи, в м?йр частиц более простых и элементарных, чем элементарные.
Академик Яков Борисович Зельдович, например, отстаивает точку зрения, что следующая ступень приведет в мир «кварков» (в приблизительном переводе с английского — «чертенят» или «бесенят»). Эти ультрачастицы названы так из-за своих некоторых поистине «бесовских» качеств. Например, кварки обладают дробным электрическим зарядом
(меньшим, чем заряд электрона). Ничего подобного в природе раньше не наблюдалось. Зельдович убежден, что частицы, за исключением электронов, позитронов и мю-мезонов.
О быстром росте и усложнении науки можно судить и по количеству научных работ, выходивших раньше и выходящих в свет теперь. В начале прошлого столетия
во всем мире насчитывалось только 100 научных журналов и других периодических изданий. Теперь их число приближается к 150 тысячам, а если темпы останутся неизменными, то к 2000 году количество периодических научных изданий на Земле составит около миллиона.
Человечество располагает библиотекой, содержащей около 35 миллионов названий книг, а всего — более 100 миллионов работ всякого рода. Ежегодно в мире печатается 3 миллиона статей, а поисками нужной литературы сегодня заняты сотни тысяч переводчиков и специалистов.
Особенно увеличивается число открытий, гипотез, практических применений теории в области физики. Неудивительно, что соответственно растет и объем научной информации, описывающей все это. Один досужий физик подсчитал, что если бы объем известного американского физического журнала «Физикл ревью» и дальше рос, как это было сразу после войны, в первые пятнадцать лет (1945 — 1960), то в XXI веке вес журнала превысил бы вес земного шара.
Невероятно резко выросла за последние десятилетия армия ученых. По темпам роста это напоминает рост настоящей армии при объявлении войны. Подсчитано, что ныне на Земле живет, здравствует и занимается изучением тайн природы ни много ни мало, как 90 процентов от всех когда-либо живших ученых, считая от того безвестного гения, что научился добывать огонь.
Естествен вопрос: против кого же эта необычная мобилизация? Какой «враг» вдруг замаячил на дальних берегах науки?
Имя ему — Неведомое. Парадокс, и прелесть, и несказанная волнующая романтика наших дней в том, что сегодня гораздо больше открывается новых тайн, чем объясняется тайн старых (хотя и это, второе, происходит с огромным, как никогда, успехом).
Та физика, которую мы называем классической, была почти безоговорочно физикой ответов: она отвечала почти на все, о чем ее только ни спрашивали. Она была убеждена, что, за немногим исключением, знает о природе все и что, пройдет еще немного времени, исчезнет и это исключение.
Физика наших дней по преимуществу физика вопросов: в ней чаще спрашивают, чем отвечают, и за каждым развязанным узелком немедленно завязывается несколько новых. Вопросы преобладают над ответами, и разница все возрастает.
Кажется почти невероятным, но это факт, что чем больше современные физики стараются понять природу, тем больше обнаруживают в ней непонятного. Страшного тут нет ничего: ведь непонятное в конце концов обязательно объясняется. Хорошее же в том, что это признак кипучей юности. Много спрашивают, когда энергия бьет через край; само обилие вопросов — свидетельство обилия могучих духовных сил.
Будет ли так продолжаться дальше? За рубежом многие отвечают: «Нет». По их мнению, в один прекрасный день люди разгадают все секреты природы, узнают, какие пружины приводят в движение все вещи, откроют тайны всех явлений. Ученым тогда, в сущности, нечего будет делать. Наука отомрет, а поисками новинок будут заниматься исключительно техники и инженеры. Эти люди будут брать какие-то раз навсегда открытые принципы науки, сравнивать их между собой и в сочетании старых принципов искать новые практические осуществления. Прогресс -в те будущие времена будет напоминать игру «Конструктор», только вместо готовых деталей там будут предлагать готовые научные идеи.
Один довольно известный американский ученый профессор Дерек Прайс на этом основании создал даже теорию, которая называется теорией сатурации (насыщения). По расчетам Прайса, еще лет тридцать наука будет развиваться такими же темпами, как сегодня, то есть очень быстро. Но затем в течение тридцати лет темпы ее станут все больше замедляться, и вот примерно в 2020 — 2030 году окончится век наук. Пытливым душам нечего будет больше искать; они должны будут срочно переключать свои стремления на что-нибудь иное.
Верно ли это хоть в какой-то степени? Разумеется, неверно, и ни в какой степени. Марксизм-ленинизм учит, что при-
рода неисчерпаема и бесконечна. А так как она еще и познаваема на всех ступенях, то нет предела увеличению человеческого знания.
И через шестьдесят, и через тысячу шестьдесят лет, и в любом, сколь угодно удаленном от нас будущем люди будут открывать и познавать все новые миры. Наука ненасытна и всегда найдет себе достаточную пищу. Другой вопрос — всегда ли ее развитие будет напоминать лавину!
Вероятно, лучше это развитие сравнивать со стадийным ростом дерева. Он продолжается и летом и зимой, но есть различие естественное и неизбежное. Сейчас наука в полосе весны. Могучий ее ствол стремится к небесам, а плодоносная, наполненная соком крона разбрасывается и густеет.
ТРУДНЕЕ ИЛИ ЛЕГЧЕ СЕГОДНЯ ИЗУЧАТЬ НАУКУ?
Быстрый рост наук многих не радует, а пугает. Им ка-жется, что человеку с каждым годом будет все труднее изучать науку, узнавать хотя бы о важнейших достижениях ее.
«Когда-то, — говорят эти люди, — чтобы быть в курсе дел какой-нибудь отрасли знания, достаточно было прочитать десяток-другой книг. Сейчас же число статей и книг на любую тему растет куда быстрее, чем человек в состоянии их осилить. Мы обречены все больше отставать от открытий и находок».
Звучит тревожно, а похоже, так оно и есть. Возьмем хотя бы вот такой пример. Учебник физики для средней школы состоит из 160 — 300 страниц. Даже его один прочитать и хорошо понять — дело не для всех простое. Обычно на это тратится по меньшей мере год. А как быть, если хочешь оказаться на переднем крае физики? На физические темы написано сейчас несколько десятков тысяч книг, и в каждой содержится что-то интересное — такое, чего не найдешь в других книгах. Правда, на помощь специалистам-физикам и серьезным ее любителям приходят рефераты — краткие обзоры вышедшей литературы, лоцманские ориентиры в книжном море. Но, во-первых, пользоваться ими не всегда легко. Во-вторых, и этот метод оказывается недостаточным; число рефератов растет, и поговаривают о рефератах на рефераты, иначе говоря, о рефератах в квадрате...
По мнению пессимистов, положение тем серьезнее, что человек от природы обладает будто бы скверной памятью:
чтобы что-нибудь запомнить, он должен медленно читать, много «раз повторять, записывать прочитанное, зубрить.
И все же оснований для тревоги нет никаких. Люди, даже без поддержки рефератов, могут быть в курсе наиважнейших и наиновейших представлений науки.
К ошибочным, грустным выводам приходят обычно из-за того, что путают два рода научных результатов — основные принципы науки (которых очень мало и которые легко понять и все запомнить) и то; что следует из этих принципов практически или теоретически: устройство научных приборов и инструментов; применение на практике — на заводах, на полях, на транспорте, в домашней жизни; содержание статей и книг; результаты опытов; новые гипотезы; поставленные, но не решенные пока проблемы, и т. д.
А ведь только первые являются основными носителями духа современной науки. Вторые — это детали, интересующие преимущественно специалистов.
Знать и понимать науку — это прежде всего знать и понимать ее основные принципы. А здесь мы вправе сделать самые оптимистические выводы. Вопреки тому, что думает, пожалуй, большинство, основные принципы науки все упрощаются и уменьшаются в числе.
Правда, упрощаются не в том смысле, в каком упрощает художник мир, когда начинает рисовать его лишь одной краской. А в том — противоположном — смысле, в каком он получается у художника, увеличивающего число оттенков. Такое «упрощение» означает, что видение мира становится
все отчетливее: более богатый набор красок (а у науки он особенно велик) позволяет изобразить мир гораздо глубже и яснее.
Проиллюстрируем это на нескольких примерах.
...Сложнейшей из наук называют часто физику. В действительности основных зако-нов физики очень мало и они просты (правда, простотой, предполагающей постепенное, шаг за шагом, изучение многих необычных явлений и углубление в мир идей, кажущихся зачастую несовместимыми со здравым смыслом). Можно понять известного американского исследователя Ричарда Фейнмана, заметившего недавно, что «успехи современной физики объясняются, быть может, ее легкостью».
Возьмем, например, такие разделы физики, как свет и электричество. Во многих учебниках они излагаются как самостоятельные, не связанные между собой разделы. На самом деле между ними есть глубокая, открытая еще сто лет назад связь. Сперва ее выявили через теорию электромагнитного поля, позднее установили и еще одну связь — через так называемую квантовую механику — главу физики, возникшую в значительной степени под влиянием учения о свете.
Особенно наглядно связь между электричеством, светом и квантовой механикой может быть продемонстрирована при помощи «простого» (увы, только воображаемого) опыта, для которого нам понадобится всего три предмета: пластмассовая школьная линейка, тиски и кошачья (или другая подходящая) шкурка.
Зажмем линейку в тиски, потрем ее выступающий конец шкуркой, чтобы вызвать электростатический заряд, и приступим к опыту. Он будет заключаться в том, чтобы придавать чем угодно — пальцем, палочкой и т. д. — линейке колебательные движения. Частоту, то есть число колебаний в единицу времени (лучше всего в секунду, тогда это будут просто герцы, сокращенно гц)9 станем изменять, наблюдая при этом, какой эффект во внешней среде произведут колебания.
Всякое периодическое движение электрического заряда порождает электромагнитные волны той же частоты, что и движение. Наша линейка станет излучателем электромагнитных волн. Постепенно увеличивая число колебаний, мы обнаружим любопытную омену явлений.
Начнем с 50 или 60 гц. С такой частотой подается переменный ток в наши квартиры. Он излучает волны, которые воспринимаются как помехи для радиоприемников. Автомобилисты замечают их всегда, проезжая мимо линий высокого напряжения. Говорят: «Попал в поле помех!»
Поднимем частоту сразу до миллиона герц (или одного мегагерца, сокращенно Мгц). Теперь линейка стала излучать радиоволны, в «окрестностях» этой частоты происходят широковещательные передачи. При 50 — 100 Мгц мы попадем в область телевидения, а при 10 000 Мгц — в область радиолокации.
В диапазоне от 430 до 700 миллионов Мгц линейка заиграет всеми цветами радуги: мы попадаем в область видимых электромагнитных волн, проще говоря — света.
Сейчас мы станем увеличивать колебания излучателя и дальше, но прежде отметим про себя, что, начиная от широковещательного диапазона и вплоть до света (включая невидимую ультрафиолетовую область), излучения внешне особенно походили на волны в буквальном смысле слова. Недаром говорят: «Работает радиостанция на в о л н е стольких-то метров».
ЭЛЕКТРОМАГНИТНЫЙ СПЕКТР
Увеличивая колебания излучателя, мы попадем в область рентгеновых лучей и гамма-лучей. Частота, соответствующая этим волнам (как и другим, о которых мы только что говорили), указана в таблице электромагнитного спектра. Показатель степени — это число нулей, которое надо поставить после единицы, чтобы получить частоту в герцах. Все волны
названного диапазона «вырабатываются» на различных установках {рентгеновские аппараты, молекулярные и квантовые генераторы, ускорители частиц и т. д.).
А уж следующие в таблице самые высокочастотные из известных нам волны люди вырабатывать пока не могут: с ними ученые имеют дело лишь в лучах, приходящих из таинственных глубин Вселенной, так и называемых «космические лучи».
Для последних групп волн характерно то, что по своим внешним проявлениям они похожи больше на частицы, чем на волны. Поэтому на практике ученые говорят о них чаще именно как о Частицах, квантах (подробнее о квантах будет сказано дальше).
Итак, к чему же мы пришли, проделав опыт с заряженной линейкой? К тому, что, хотя и наблюдались разные эффекты (поле, волны, частицы), в действительности они одной при-роды. Только разные частоты отличали их. Электричество, свет, квантовый эффект «превращения» волны в частицу — здесь мы везде имеем дело с одной физической реальностью, именуемой электромагнитным полем.
Много общего можно найти и между другими разделами физики, часто изображающимися в учебниках как совокупность фактов, распиханных по главам, словно по ящикам, стоящим рядом, но отделенным один от другого непроницаемыми стенками. В лучшем случае после долгого объяснения предмета по старым правилам здесь говорят вдруг, что все это неверно, что все надо переучивать по-новому (хорошо еще, если эти новые представления как-то разъясняются).
Отсюда «трудность» изучения физики, на самом деле только кажущаяся трудность.
Обратимся к химии. Когда Дмитрий Иванович Менделеев открыл периодический закон элементов, сразу резко упростилось изучение неорганической химии. Стало также ясно, что не только на Земле, но и во всей Вселенной число простейших элементов не может превышать вполне определенного количества (не очень сильно отличающегося от сегодняшнего итога: 104). Ученые получили блестящую
возможность предсказывать существование и свойства еще не открытых элементов и соединений.
Другое великое открытие в химии, сделанное Александром Михайловичем Бутлеровым, — так называемая структурная теория Бутлерова — навело порядок в органической химии. Теперь обе химии на наших глазах сливаются в одну, и эта общая химия стучится в дверь физики, с тем чтобы занять в ней место на правах раздела.
Пример из астрономии. По Аристотелю и Птолемею, Земля — «пул» Вселенной, а звезды и планеты с бешеными скоростями вращаются вокруг нее. Нельзя сказать, что эта точка зрения не давала никакой возможности правильно рассчитывать движения звезд и планет. Расчеты производились, но до чего они были трудны! Греческие философы учили, что орбиты планет возникают в результате сложных круговых движений по системе окружностей. Для описания орбиты Марса, например, требовалась добрая дюжина окружностей различного вида. Но вот после долгих утомительных вычислений Иоганн Кеплер сформулировал свои простые три закона движения небесных тел. И что же, орбиты всех планет (и спутников этих планет) астрономы стали находить быстро и чрезвычайно точно. Восторжествовал подход, казалось бы, более сложный — планеты движутся вокруг Солнца, — но в действительности это не усложнило, а облегчило решение задачи.
Развитие наук внешне очень напоминает развитие больших городов. И те и другие растут и в чем-то усложняются, ко вместе с тем в них растут организация и порядок. В городах все улучшающаяся система дорожных знаков и сигнализации облегчает ориентировку; в науках отыскиваются какие-то единые, общие принципы, и это облегчает их изучение.
Везде, где вмешивается человеческий разум, Сложность движется вперед рука об руку с Простотой.
Поясним это с помощью аналогии.
Представим себе следующее. Человек вырос в глухой таежной деревушке и вдруг впервые в жизни оказался на московских улицах. Понять его переживания легко. Никакая сказка наяву не потрясет так воображения новичка, как вид большого города. Кто не замрет в испуге, сбитый с толку перекрещивающимися потоками машин, кто с непривычки не растеряется в шуме, сутолоке, в быстрой смене картин напряженной столичной жизни!
А поживет здесь человек и постепенно ко всему привыкнет. То, что выглядело беспорядочным нагромождением вещей, движений, звуков, и для него приобретет черты симметрии и порядка. Он убедится, что, зная законы жизни большого города, в нем заблудиться, может быть, труднее, чем в ином районном центре. В один прекрасный день он сделает открытие, что с ростом городов безопасность в них обычно возрастает. Привыкнув к ритму новых улиц, он удивится, узнав, что в старину люди чаще попадали под колеса медлительных повозок (как было, например, с первооткрывателем радия Пьером Кюри), чем в современном крупном городе — под колеса автомобилей.
Не похожи ли люди, несведущие в науках, но наслышанные об их «чудесах», на тех робких гостей столицы, чьи сердца замирают на каждом перекрестке? И не так ли сравнительно прост путь и тех и других к познанию основных законов нового для них мира?
НЕНАСЫТНОСТЬ РАЗУМА
Следить за новостями, вылавливать в океане литературы все относящееся к любимой области науки, запоминать, перерабатывать в сознании детали — все это отнимает больше времени, чем изучение основ. Но специалисту это нужно, специалист как раз и ценен накопленными сведениями о деталях; а раз так, значит, существует и проблема: как, тратя меньше времени, вбирать возможно больше сведений (информации).
Нет оснований опасаться, что мозг не выдержит за некоторым пределом: умственная мощность человека, его способность понимать и запоминать практически беспредельны. Представление об этом дают следующие данные. Головной мозг человека состоит из 14 — 20 миллиардов мельчайших нервных образований — нейронов. Это они — кладовые человеческого ума. А загружено только четыре процента их...
Даже принимая во внимание, что часть нейронов мы унаследовали от далеких предков — рыб, ящериц, обезьян, что они являются пережитками, рудиментами, все равно у нас еще огромные запасы неиспользованной умственной мощности. Мы могли бы без особой тренировки уже сейчас запоминать раз в пятнадцать более того, что знаем.
Все же путь простого механического насыщения человеческого сознания деталями, путь узкой специализации — сегодня пережиток.
Можно заметить, что чем уже специалист, тем сложнее терминология, которой он пользуется, тем непонятнее его язык для непосвященных. Отталкиваясь от других, такой узкий специалист и других отталкивает от своей области, от желания познать ее. Многие рассуждают: «Если уж даже специалисту так трудно докопаться до истины, что он изобретает новые понятия и сочиняет сложные формулы, то мне, неспециалисту, лучше и не подступаться».
Путь узкой специализации недостоин современного человека, потому что принижает его, не увеличивает, а ограничивает общий кругозор: детали вытесняют главное.
Даже самые талантливые люди уже не могут охватить единым взором все здание науки. Но если они все же не стараются ото сделать, они невольно наносят ущерб развитию собственного дела: у соседа может оказаться то, что им необходимо для толчка вперед, но толчок не получается из-за незнания соседских дел.
Увлечение деталями суживает специализацию. Отсюда шаг до положения, о котором говорят: «Этот человек идет к тому, чтобы в будущем знать все ни о чем».
Чтобы стать хорошим специалистом, нужны талант и время. Так рождается парадокс: «Чем способнее человек, тем дольше должен он учиться, чтобы затем наилучшим образом применить свои знания; но пока обучится — состарится и потеряет способность отдавать знания».
Нет, не детали, а большие философские идеи науки должны служить главной пищей ненасытного разума человека нашей эпохи. Только это его достойно, только видение впереди широких горизонтов науки способно дать ему истинное творческое удовлетворение и счастье.
А как же обстоит дело с практической необходимостью знать и детали?
Ответ может быть один: с этим лучше всего справляются машины — электронно-счетные, различные кибернетические устройства и т. п., значит, ка них это и надо возложить.
Фактически так и происходит: тенденция современного научно-технического прогресса — перелопачивать второстепенное, отбирать из него при помощи машин все нужное специалисту.
Машина тем быстрее находит требуемую информацию, чем больше счетных операций производит в секунду. Теперь уже построены и работают электронно-счетные машины со скоростями в сотни тысяч операций в секунду (одна такая машина может «прочитать» в течение часа около десяти миллионов книг). На повестке дня — создание машин со скоростями в миллионы операций в секунду.
На помощь таким сравнительно «тупым» (потому что они механические, «нерассуждающие») искателям информации, по-видимому, в скором времени придут более «умные», «соображающие» машины.
Уже в наши дни создается интеллектроника — машины, выполняющие некоторые виды интеллектуального труда: доказательство сложных теорем, вывод формул, построение обобщающих теорий и т. п. Можно ли сомневаться в том, что в ближайшие десятилетия интеллектроника, ничуть не принижая человека, оставляя ему больше времени для глубокого мышления и тонких радостей, разовьется до фантастических, с нашей точки зрения, возможностей.
Другая важная перспектива — «бинокли для ума». Известно, что у человека процессы ввода информации в сознание совершаются в несколько раз медленнее, чем логические процессы переработки информации, протекающие в
мозгу. Еще б десять раз медленнее протекают процессы вывода данных и команд. Человек медлителен в своих действиях, но он отнюдь не тугодум, напротив: разум быстро принимает Нужные решения, только вот нерасторопны помощники — руки и язык. Впрочем, их нельзя винить: уж слишком медленно по нервам (куда медленнее, чем по проводам) идет приказ «Сделать то-то и то-то». Если же вдобавок мозг распоряжается: «Да побыстрее!», помощники начинают спешить и, конечно, часто ошибаются.
Ученые приступили к созданию устройств, убыстряющих вводные и выводные процессы мыслительной и нервно-психической деятельности человека. Устройства эти управляются биотоками и в будущем получат, вероятно, такое же широкое практическое применение и распространение, как сегодня бинокли или очки. Только если оптические приборы позволяют во много раз увеличивать силу зрения, то биото-ковые устройства пригодятся как «бинокли для ума», точнее — для его оперативной деятельности.
Страх перед чрезмерной специализацией, с одной стороны, перед необходимостью увеличивать сроки обучения людей — с другой, исчезнет с развитием интеллектроники, «биноклей для ума» и прочих хитроумных изобретений кибернетики. Индивидуальная культура, культура личности, будет несомненно повышаться с каждым годом, потому что такова тенденция общественного развития.
На примере своей страны мы видим, что дает человеку сочетание прогресса общества и прогресса техники и наук: больше свободного времени, больше возможности занять его делами, не относящимися к главной специальности трудящегося: спортом, музыкой, слушанием лекций, встречами с интересными людьми и т. д.
Узкая специализация — это нечто вроде детской болезни умственного прогресса человечества. Нет сомнения, что, когда люди вступят в подлинную пору своей зрелости — в эпоху коммунизма, — болезнь эта исчезнет без следа.
Живя в век космоса и атома, естественно равняться на науку этого века. Но нельзя бросаться в крайность — пренебрежительно отвергать все то, что было найдено предшественниками.
Да, «девяносто процентов всех ученых живы, работают рядом с нами®-. Но если бы мы говорили не о людях, а об открытиях и изобретениях, то назвали бы еще большее число. В своих делах талантливые люди вообще почти никогда не умирают. Сделанное ими обычно живет вечно. Все ценное, созданное в прошлом, остается в активе современности, превращаясь в неотъемлемую часть настоящего.
Со времен Пифагора, например, люди пользуются его открытием, сделанным в VI веке до н. э., что сумма углов плоского треугольника равна двум прямым. Архимед оставил человечеству среди прочих ценных истин и ту, что на тело, погруженное в жидкость или газ, действует выталкивающая сила, равная весу жидкости или газа в объеме тела. А Гиппарх, живший во II веке до н. э., довольно точно вычислил расстояние от Земли до Луны и установил время обращения планет вокруг Солнца (следует заметить, что только восемнадцать веков спустя Ньютон открыл закон всемирного тяготения, объясняющий это движение).
Вероятно, так было не всегда. Многое открывалось и изобреталось лишь для того, чтобы затем стать основательно забытым на десятилетия и даже на века. В наше время — время высочайшей активности научной мысли — такое становится почти невозможным. Поиски науки не ограничиваются больше горизонтальным разрезом действительности. Ученые стараются проникнуть в будущее (научное предвидение), тщательнее, чем раньше, они осваивают идейное наследие прошлого. Иначе говоря, современная наука занимается активно и вертикальным разрезом действительности.
Эволюция научной мысли раскрывается не только как подъем по ступеням, как движение от причины к следствию. Здесь выступает явственно и другое: все более глубокое, более убедительное подтверждение главных истин, найденных предшественниками. Отсюда два направления прогресса. Искать новое — одна задача ученого. «Отрабатывать старое, иначе говоря, очищать фундаментальные законы, принципы и запреты от всего наносного, четче выявлять границы их применения — другая, ничуть не Менее ответственная задача.
В основе нашего непоколебимого уважения к заслугам прошлого — сознание того, что все, что открывалось, подтверждалось позже. Человеку дан чудесный дар — правильно видеть природу. Мы постоянно убеждаемся, что когда кто-то проницательный вдруг обнаруживает некие новые для всех ее черты, то при ближайшем рассмотрении они и впрямь оказываются такими, как их увидели.
Даже не имея еще разумного объяснения, правильной теории, люди часто сооружали то или иное сложное устройство, словно озаренные невидимым солнцем истины. Так, в разные времена разные народы овладевали тайной прочности. Овладевали настолько полно, что им потом завидовали зодчие последующих веков. Вспомните пирамиды, о которых современные египтяне говорят: «Все боится времени, а время боится пирамид». Или другой, менее известный, но, по-моему, еще более впечатляющий пример: речь идет о сооружении, в отличие от пирамид, непрерывно работающем, работающем под нагрузкой, да еще какой! В итальянском городе Римини есть мост, соединяющий берега реки Мареккиа. Этот арочный мост длиной 63 метра начал строиться в 14 году нашей эры и был закончен пять лет спустя. По мосту когда-то с грохотом проносились колесницы римских легионеров; а во время второй мировой войны он выдерживал танковые колонны. И сейчас по нему днем и ночью мчатся легковые и грузовые автомобили.
Или вот еще пример. Когда, вы думаете, был изобретен телефон, точнее, способ передачи человеческого голоса по длинной нити? Гораздо раныпе, чем это сделал американец Белл, воспользовавшись электрическим током. Недавно в Перу в развалинах одного дворца был найден «телефон», возраст которого определяется более чем в тысячу лет. Он состоял из двух тыквенных фляг, соединенных туго натянутой бечевкой...
Смотреть на прошлое хотя бы глазами прошлого уже полезно. В действительности мы смотрим на него глазами настоящего. Нам раскрывается все та же истина, но простирающаяся и за ограниченный вчерашний горизонт.
Прекрасно это пояснил недавно академик Николай Николаевич Семенов.
«На самом деле, — писал он, — новое в науке никогда не бывает простым отрицанием старого, но лишь его существенным изменением, углублением и обобщением в связи с новыми сферами исследования. Если бы новая теория начисто ликвидировала старые закономерности и теории, то наука вообще не смогла бы развиваться. Любая фантастическая теория была бы в принципе возможной, и полный разгул воображения и чувств ученого стал бы оправдан. К счастью, это не так. Например, открытие теории относительности, открытие электрона, кванта света, внутреннего строения атома и его ядра отнюдь не отменили механики Ньютона, законов оптики и электродинамики, законов химической валентности, периодического закона Менделеева, но, наоборот, по-настоящему вскрыли их внутреннюю сущность, что послужило мощным толчком для дальнейшего развития физики и химии XX века и их грандиозных практических приложений, например открытия и использования атомной энергии».
Развитие физики — это постепенное освобождение человека от предрассудков, от балласта, окружающего истину. Но сказав, что наши предки жили в мире научных предрассудков, мы должны немедленно добавить: и мы тоже. Разве кто-нибудь осмелится уверять, что современная наука не по строена на предрассудках (с точки зрения будущих поколений), что мы знаем истицу в высшем ее смысле?
И все-таки мы поступаем правильно, не думая о предрассудках сегодняшней науки. Они станут таковыми только с точки зрения .будущей науки, то есть для людей, обозревающих более широкие миры, чем наш. Свой мир мы видим без особых искажений, как видели без особых искажений более ограниченный свой мир наши предки.
Современный опыт подтверждает, что Ньютон был прав в масштабах сантиметра, грамма, метра в секунду. В масштабе стомиллионной доли сантиметра мы обращаемся к Бору и к Гейзенбергу, а в масштабе сотен тысяч километров в секунду — к Альберту Эйнштейну. Законы Ньютона здесь неприменимы, но разве это говорит о том, что он ошибся? Истина, открытая им, остается неизменной. Устанавливаются лишь пределы ее практического применения.
То новое, что мы узнали, увеличило знания, приобретенные с помощью Ньютона, и обогатило их. Никто не требует, чтобы мы от них отказались. Значение открытий Ньютона ке уменьшается, а возрастает с развитием научной мысли: великий физик прошлого становится как бы нашим современником ; он выступает уже не только как автор классической механики, но и как один из авторов более универсальной современной теории — теории, полнее учитывающей многообразие Вселенной и протекающих в ней явле кий.
Так не только в физике. Новые открытия не отвергают старых знаний, а только строже ограничивают область их применения, подчеркивая их фундаментальность.
К сожалению, многие, увлекаясь новостями, улускаюу из виду фундаментальные цели научного прогресса. Есть лица, вовсе их не понимающие. Не так уж редко даже в популярной литературе можно встретить нагоняющие тоску рассуждения о непрочности наших знаний, о том? будто новые открытия стирают, аннулируют, отметают все, что было открыто раньше. Некоторые «изобретения» или «опыты» (правда, как позднее выясняется, обычно дефектного порядка) истолковываются как «доказательства» ошибочности важнейших постулатов (основных законов) естествознания.
Открытия не умирают, и потому, обращаясь к старой истине, но пронизанные духом новых идей, мы часто с ее помощью делаем шаг к пониманию и новой истины.
НАУКОЙ ДОЛЖНЫ ЗАНИМАТЬСЯ ТОЛЬКО ЧЕСТНЫЕ, ДОБРЫЕ ЛЮДИ
В начале книги мы говорили, как на заре веков человек открыл и сделал своим оружием могущественнейшую силу природы — умение управлять ее силами. Через долгий и мучительный процесс поисков, как нужно изучать природу, что должна представлять собой наука — инструмент такого изучения, — люди постепенно овладевали найденным оружием. Рассказ о покорении могущественнейшей из сил был бы не закончен, если бы мы, хотя вкратце, не упомянули и о том, что делалось, чтобы эта сила не обернулась против самого ее разумного обладателя.
В своей глубокой инстинктивной мудрости человек давно догадывался, что и умственная сила может быть направлена против него, как любая другая. В мифах и поэтических произведениях всех эпох нетрудно отыскать тревожные высказывания по этому поводу.
Между познанием и злом устанавливалась теснейшая связь, и кара небесная преследовала тех, кто выходил за запретные пределы Неведомого. Египтяне говорили: «Когда человек узнйет, что движет звездами, Сфинкс засмеется, и жизнь на Земле иссякнет». Прометей, похитивший у богов огонь он подаривший его людям, был за это прикован к скале,
и орел клевал его печень. Правда, герой Геракл в конце концов освободил Прометея, но так как преступление, с точки зрения богов, не могло остаться безнаказанным и кто-то должен был умереть, Зевс взял жизнь благороднейшего из кентавров — Хирона; потом Хирон был вознесен на небо и превращен в сияющего меж созвездий Стрельца.
Во всех этих легендах чув ствовался безотчетный страх людей перед последствиями познания. С веками люди стали обосновывать, оправдывать этот страх. Они поняли, что дело совсем не в самом познании, а в том, кто выращивает его плоды.
Уже алхимики догадывались об этом; до сих пор волнует завет их последующим поколениям ученых: «Не допускайте в ваши мастерские силу и ее рыцарей, ибо эти люди употребляют во зло священные тайны, ставя их на службу насилию».
Отчетливее всех увидел два лица научного и технического прогресса Карл Маркс. В своей знаменитой речи на юбилее «Народной газеты» в 1856 году он указал на те руки, которые должны направлять прогресс, чтобы тот служил благу всех людей.
«В наше время, — говорил Маркс, — все как бы чревато своей противоположностью. Мы видим, что машины, обладающие чудесной силой сокращать и делать плодотворнее человеческий труд, приносят людям голод и изнурение. Новые, до сих пор неизвестные источники богатства благодаря каким-то странным, непонятным чарам превращаются в источники нищеты...
Этот антагонизм между современной промышленностью и наукой, с одной стороны, современной нищетой и упадком — с другой, этот антагонизм между производительными силами и общественными отношениями нашей эпохи есть осязаемый, неизбежный и неоспоримый факт... Мы, со своей стороны, не заблуждаемся относительно природы того хитроумного духа, который постоянно проявляется во всех этих противоречиях. Мы знаем, что новые силы общества, для того чтобы действовать надлежащим образом, нуждаются лишь
в одном: ими должны овладеть новые люди, и эти новые люди — рабочие»
За сто с лишним лет после этой речи наука сделала гигантский шаг вперед. Две стороны ее, или два лица, стали видны еще отчетливее. Люди начали особенно интересоваться, что делают ученые не только в своей стране, но и за границей. Никогда раньше научные открытия и технические достижения не становились так быстро достоянием всех людей, всего человечества, как сегодня. Люди радовались добрым плодам науки, а когда она приносила бедствия или грозила ими, это потрясало всех.
В 1945 году американцы сбросили на два японских города первые атомные бомбы. Работами по созданию этих бомб руководил знаменитый американский физик Роберт Оппен-геймер. Бессмысленное убийство сотен тысяч людей так потрясло его, что он заявил во весь голос: «Мы сделали работу за дьявола». Он поклялся никогда больше не создавать бомбу, зная, что распоряжаться ею будут люди, которым безразличны судьбы народов. Он говорил себе, что настоящий ученый не должен помогать таким людям.
Оппенгеймера преследовали и даже судили, но он стоял на своем. Он стал заниматься — и так продолжалось до самой его смерти — только мирными делами атомной энергии.
Необычайно возросла ответственность ученых за свои дела. Высоким моральным обликом должен обладать человек, творящий науку в наше время!
«Трижды академик» Константин Иванович Скрябин (его так называют потому, что он состоит действительным членом трех академий: Академии наук СССР, медицинской и сельскохозяйственной) часто говорит: «Чтобы стать ученым — мало любить науку, надо еще быть и благородным человеком». В числе многих качеств истинного ученого Скрябин называет и такие, как абсолютная честность, скромность, самокритичность...
Замечательно, что все большие, настоящие ученые — действительно самоотверженные, благородные люди. Наука — благодатная область, где человек может развернуть во ©сю ширь лучшие стороны своей души, проявить свою готовность к подвигу.
Известный советский физиолог Леон Абгарович Орбели задался целью узнать, как наука может, например, помочь подводникам, космонавтам, если вдруг иссякнет запас воздуха в космическом корабле или на подводной лодке.
Что происходит с человеком при удушье? Ученый на себе проделал такие опыты. Он сел в герметическую камеру и велел выкачивать из нее воздух, пока там не осталось его столько, сколько бывает на высоте 12 километров. Орбели стал задыхаться, он потерял сознание. При помощи искусственного дыхания его привели в чувство только через четыре часа. Другой опыт он проделал в отсеке подводной лодки на Черном море. И снова риск. Но цель была достигнута, и наука узнала то, чего не знала раньше.
Многие, подобно Орбели, во имя жизни людей или прогресса науки ставили опыты на себе, рисковали жизнью. Известны случаи, когда врач погибал, чтобы оставить полезные сведения для науки. Таким был, например, немецкий врач Тртнагель, который в июльскую ночь 1905 года по собственным ощущениям описал картину наступления смерти от тяжелейшего приступа грудной жабы. Именно таких, как Тотнагель, имел в виду голландский медик Ван Тюльп, предложивший для врачей эмблему — горящую свечу и девиз: «Светя другим, сгораю!»
Могут сказать: «Хорошо, но спасение жизни, особенно с риском для собственной жизни, — это все же дело исключительное. А как может совершить свой подвиг скромный химик, физик, инженер и вообще человек такой профессии, где нет драматической опасности?» Что ж, прекрасные черты можно проявить и в «мелочах»: в товарищеской поддержке, в бескорыстной помощи в работе, в добром совете. Такие «мелочи» часто оборачиваются серьезными достижениями науКи, показывая, что и в этом случае не бывает пустяков.
Вот пример. Окончив школу, пытливый юноша Георгий Флеров работал смазчиком, чернорабочим, подручным электромонтера, электриком. Потом он поступил в политехнический институт и еще студентом стал проситься работать в лаборатории «хотя бы бесплатно». Окончив институт, он поступил на работу в Ленинградский физико-технический институт и занялся созданием прибора-счетчика для наблюдения за распадом атомных ядер. В это время кто-то сказал Флерову, что в Радиевом институте работает над таким же примерно прибором другой молодой ученый — тоже в прошлом рабочий — Константин Петржак. Флеров не стал гнаться за первенством. Он сам явился к Петржаку, рассказал ему все о своих идеях и предложил во имя науки работать вместе. И вот вскоре два ученых сделали очень важное открытие: они первыми наблюдали так называемый самопроизвольный распад урана, то есть распад урана без бомбардировки его другими частицами — нейтронами, как это делали обычно. Их эксперимент явился важным вкладом в современную физику атомного ядра.
Крупнейшим мировым специалистом по физике звезд считается профессор Алла Генриховна Масевич. А ведь ей помог, вывел на правильную дорогу известный ленинградский популяризатор науки Яков Исидорович Перельман. Тбилисская школьница Алла Масевич написала Перельману о своем увлечении звездами и сразу получила от него ответ. Потом переписка стала продолжаться, и Перельман помог безвестной школьнице найти себя и получить нужное образование.
Полезная, творческая помощь — тот же подвиг.
Особенно когда это относится к человеку в начале его пути длиною в жизнь. Честность и бескорыстие, верность и самопожертвование, скромность и рыцарское отношение к другим — не только красота. В совокупности своей они тот ключ к героическому, полному прекрасных подвигов будущему, в которое вступает молодой естествоиспытатель наших дней.
ПОЧЕРК ПРИРОДЫ
Били-были очень умные бородачи. Они смотрели по сторонам и старались угадать, из чего состоят все вещи. Особенно их интересовало то о б щ е е, что есть во всех предметах. Бородачи, хотя и жили более двух тысяч лет назад (в стране, которую мы называем теперь Древней Грецией), верно рассуждали, что в руках одного мастера — Природы — все должно иметь как бы единый почерк, чем-то напоминать одно другое.
Но чем именно? Какие свойства одинаково присущи воздуху и камню, дереву и человеку? Вопрос волновал и манил тайной. По почерку людей угадывают их характер; не начинается ли разгадка мироздания с разгадки почерка природы?
Как же отвечали бородачи?
По !мнениям они разделились. Одни решили, что общее для всех вещей — их неизменность, стремление к покою. Даже летящая стрела казалась этим людям застывшей в воздухе. «Движение ее лишь кажущееся, — говорили они. — В действительности, полет стрелы — простая смена ее покойных состояний». (Для нас их картина мира похожа на кинопленку с кадрами.)
Другие резко возражали. В отличие от первых, они были убеждены, что в природе ничто и никогда не повторяется. Даже мертвая скала представлялась им воплощением потока. «Панта реи (по-древнегречески «все течет»), — говорили они, — все течет, все изменяется и нельзя в одну и ту же реку вступить дважды» (вода будет другая, стало быть, река уже не та).
Кто же вышел победителем в этом споре? Замечательнее всего то, что проигравших не было. Выяснилось, что правы и первые и вторые.
Прошли века, и люди убедились, что все в природе как бы соткано из противоречий. Движение и покой, постоянство и перемены, одно и разное оказались двумя равноправными сторонами действительности.
Куда бы мы ни обратили взор, мы видим эту двойственность.
Мы дышим и с каждым вдохом втягиваем в себя с воздухом 40 миллиардов миллиардов атомов аргона; через мгновение мы выдыхаем те же самые 40 миллиардов миллиардов атомов: аргон инертен и не вступает ни в какие соединения. Мы дышим теми же аргоновыми атомами, которыми дышали Цезарь и Петр Великий и будут через сотни лет дышать наши дальние потомки. «Одно» сосуществует с «разным».
Метагалактика, иначе вся обозримая астрономически часть Вселенной (сегодня для радиотелескопов это означает протяженность примерно в 10 миллиардов световых лет), состоит из единицы с 82 нулями (записывается: 1082) простейших частиц: протонов, нейтронов и электронов. Это «одно»: ни одна частица к этой массе не прибавилась, возникнув из ничего, ни одна бесследно не исчезла. Но во Вселенной происходят катастрофы, рождаются и умирают звезды и другие небесные тела. Это — «разное», прекрасно уживающееся с «одним».
Кстати, нам не впервые встречается число с большим количеством нулей. Будут попадаться и такие числа, где впереди стоит не единица, а также — где нули группируются в знаменателе. Договоримся, как будем иногда записывать такие числа. Удобнее всего делать так, как сделали только что: не писать все нули, а их количество указывать в показателе степени у десятки. Это значит, что 102 есть сто, 103 — тысяча, 106 — миллион, 109 — миллиард, Ю12 — триллион и т. д. Когда речь идет об очень маленьком, дробном числе и нули нужны в знаменателе, будем писать ту же де-
сятку, но перед показателем степени ставить минус: 102 значит одна сотая, 10® — одна миллионная и т. д.
ныи вакуум имеет плотность 1019 г/см3 — единица, деленная на единицу с 19 нулями граммов в кубическом сантиметре; плотность межгалактической среды 10 30 е/см3 — единица, деленная на единицу с 30 нулями, и т. д.
Число, отличное от десятки и начинающее все выражение, ставится перед десяткой. Плотность ядер-ного вещества 2 1014 г!см3 — двести триллионов граммов, или двести миллиардов килограммов, в одном кубическом сантиметре. Приблизительный возраст земной коры 5 -10® — пять миллиардов лет; скорость света — 3 J010 см/сек, и т. д. Это куда короче
и изящнее, чем писать: 30 000000000 — тридцать миллиардов см/сек.
Еще один пример. В водородной бомбе средней мощности энергии примерно столько же, сколько ее выделил во время самого большого из зарегистрированных на Земле извержений вулкан Кракатау в Тихом океане в 1883 году1. Такого количества энергии достаточно, чтобы перенести самый высокий в мире дом — Эмпайр стейт билдинг — из Нью-Йорка на Марс. «Одно» и «разное» в этом случае — два направления заданной возможности: первая — повторить на горе людям извержение Кракатау, вторая — произвести полезную работу титанических масштабов (конечно, более осмысленную, чем бросок небоскреба на соседнюю планету).
От двойственности природы — две группы законов физики. Законы сохранения показывают, какие свойства или принадлежности тел не изменяются: не исчезают и не возникают вновь. Таковы, в частности, законы сохранения энергии и массы, электрического заряда, количества так назы-
1 Взрыв этот в районе Зондского пролива (Индонезия) был слышен на расстоянии до 3 тысяч километров, а возникшая в результате взрыва морская волна высотой до 36 метров обошла весь земной шар. Только на прилегающих к месту взрыва островах — Яве, Суматре и других — погибло около 50 тысяч человек.
ваемых тяжелых частиц (протонов, нейтронов и гиперонов), входящих в состав всех атомов или насыщающих пространство.
Другая группа законов — все прочие законы, показывающие, как именно ведут себя тела, как движутся и изменяются под воздействием других тел и сил, К ним относятся законы движения Ньютона, закон вЪемирного тяготения, закон деформации Гука, законы электромагнитного поля Максвелла и некоторые другие.
Великолепно это сочетание постоянства и перемен! Извечное как бы смиряет разгул стихий, отмеренность — узда на необузданном. Все полетело бы вверх тормашками, все кончилось бы, исчезни хоть ненадолго существующее в природе равновесие!
Есть в физике понятие: слабые взаимодействия. Так называются силы, с которыми действуют одна на другую мельчайшие частицы материи. Это как страшная болезнь. Не будь слабым взаимодействиям какого-то противовеса, они менее чем за тысячную часть секунды превратили бы все вещество мира в легчайшие частицы — нейтрино и электроны.
К счастью, противовес им есть: он называется законом сохранения тяжелых частиц. Поэтому, хотя распад одних тяжелых частиц с испусканием электронов и нейтрино и происходит, но только так, что одновременно — в процессе этого же распада — появляются другие, новые тяжелые частицы. И этих новых частиц как раз столько же, сколько исчезло старых.
Второй пример полезной двойственности природы. Мы ездим в поездах, летаем на самолетах... Какому закону физики обязаны мы тем, что можем пользоваться всем этим? Ответ, напрашивающийся сам собой: конечно же, закону сохранения энергии — закону количественного постоянства физического движения при его переходах и превращениях; например, тепловое или химическое движение превращается в механическое, в силу чего вращаются колеса или пропеллер. По этот ответ неполон. В такой же степени обязаны мы еще одному закону — закону движения: «второму закону термодинамики». Он показывает направление перехода движения — от горячих тел к менее горячим; действие его тоже обязательно, чтобы работал двигатель.
И жизнь человека оборвалась бы, и во всей Вселенной наступил бы хаос, если бы воцарились одни какие-нибудь законы: сохранения или движения.
Обычно физику начинают изучать с механики — старейшего ее раздела — и тем как бы подготовляют сознание ученика к восприятию более сложных разделов физики.
Считают, что механика — наука о движении тел и о силах, заставляющих их двигаться, — особенно проста благодаря «самоочевидности» своих истин.
Между тем механика не легче и не труднее других разделов физики. Есть в ней, конечно, утверждения, запоминающиеся сразу, но есть и тонкости, требующие раздумья.
Механика просто как-то ближе и роднее человеку. Она связана с телами и явлениями его практики. Ее законы человек увидел и познал на опыте раньше других законов физики.
Не то чтобы каких-либо зачатков науки, возможно, че-тырех-пяти десятков слов не знал наш далекий предок, когда в его зародышевом сознании возникли вполне четкие представления о движении. Он всматривался в мир и видел: все в вечных переменах, в постоянном стремлении куда-то. Река не спеша несет свои воды, ветер шевелит листву, а лесной пожар гонит перепуганных зверей из нор и дупел.
Восхищенными или наполненными ужасом глазами смотрел древний человек на перемещение тел в окружающем ландшафте, на череду событий. Все его учило. Преследуя оленя или спасаясь от клыков разъяренного кабана, человек мог оценить не только острожизненное значение движения, но и силу своих первых знаний, первых навыков по управлению движением.
В борьбе за существование в сознании его сложились первые, не выраженные словами, младенческие представления о силах и движении:
одни тела движутся помимо моей воли — Солнце, звезды, животные, окружающие люди; другие тела движутся так, как я хочу, — мое оружие, я сам; вмешавшись, я могу повлиять на движение некоторых, обычно неподвластных мне тел; для этого я должен приложить усилие — толкнуть или остановить их, метнуть копье или ударить палкой;
направление усилия важнее самого усилия; правильно его выбрав, я могу породить силу посильнее моей собственной: скатить, например, с горы камень, который напугает моих врагов; могу, если захочу, уничтожить силу, превышающую мою: убить палкой тигра или сделать что нибудь другое. Зная нужное направление усилия, я сильнее всех стихий.
Когда интенсивно «заработали» слова и мысль, представления о силах и движениях стали несколько конкретнее:
чтобы вывести тело из состояния покоя, к нему надо приложить силу;
тело, если его все время не толкать, рано или поздно остановится;
чем больше приложенная к движущемуся телу сила, тем больше его скорость;
легкие тела всегда и весьма заметно падают медленнее тяжелых...
Тысячелетиями эти представления владели сознанием людей, и никто не сомневался в их истине. Их принимали как нечта очевидное, в проверке и подтверждении не нуждающееся.
А потом? Потом нашли, что они ошибочны. Почему же мы говорим о них сейчас? Стоит ли вспоминать о них, начинать с них современную книгу о физике, когда большинству известно, что законы классической механики формулируются иначе?
Убежден, что не только стоит, но и совершенно необходимо.
Во-первых, вопреки распространенному мнению, высказанных истин никто не отвергал по той простой причине, что по-своему они верны, что любой эксперимент подтверждает их для тех условий, для которых они выводились. Катящийся по футбольному полю мяч остановится, если его не подталкивать; перышко, брошенное вместе с пулей, упадет позже ее, и т. д.
Конечно, не будь трения, мяч не остановился бы, а будь на Земле вакуум, перо и пуля упали бы одновременно. Но люди ведь не живут без трения, и окружает их воздух, а не космическая «пустота». А те, кто первыми рассуждали о движении, думали не об отвлеченном, родившемся потом в сознании, а о реальном мире.
Человеку свойственно правильно видеть природу, и он побеждал стихии потому, что видел именно ту природу, в которой жил. В такой реально окружающей его природе человек боролся, в ней открывал и изобретал.
Сейчас мы живем в колоссальном мире, в котором наряду с непосредственно воспринимаемой нами областью есть области, повседневно нами не ощутимые. Мы их не чувствуем или потому, что в своем естественном состоянии они постоянно чем-то наполнены (например, «пустота», а точнее, окружающий нас вакуум — молекулами воздуха, благодаря чему мы чувствуем атмосферу, а вакуума не чувствуем), или потому, что наши органы чувств слишком грубы для них, их не воспринимают — таковы микромир (мир атомов и их осколков) и мир сверхвысоких скоростей.
Неощутимость таких областей природы не мешает нам проникать в них. Мы все равно собираем с них дань, извлекаем из их недр энергию или пищу для утоления любознательности. Но первобытный человек знал только ощутимый мир; все остальное, вплоть до самой простой примитивной абстракции — мира без воздуха и без трения — было чуждой для него природой. Он ничего там не увидел бы, даже если бы ему сказали, что есть и такие миры.
Мир первобытного человека, как и мир детей, порой называют «миром предметных представлений». Что ж, название совершенно точное: идеи в подобном мире приходят не от отвлеченных образов, а непосредственно от предметов, преимущественно от предметов повседневной практики.
Мир предметных представлений имеет свои достоинства. Первое из них — умение показывать главные черты реальности.
Мы восхищаемся наскальными изображениями живот
ных и охоты, сделанными тысячи, а иногда и десятки тысяч лет назад. Многим они знакомы по репродукциям или фотографиям: изображение дикой лошади на скале близ села Шишкино на реке Лене, фрески из Тассили в Северной Африке, изображения в гротах Магвимеви в Грузии, недавно обнаруженные крашеные фигуры животных в пещере на Урале... Высеченные на скале, иногда написанные краской (обычно охрой), они поражают выразительностью. Как замечателен в них каждый штрих! Ничего, кроме самого существенного — движение, ярость, торжество победы, — но это трепещущая жизнь.
«Ничего, кроме самого существенного», — так можно охарактеризовать древние представления об окружающем. «Земля плоская» (для неандертальца, ограниченного в передвижении, ее шарообразность несущественна). «Природа
боится пустоты» (иди «отвратительного Ничто», как писал Аристотель; первобытный человек никогда не поднимал воду по трубе на высоту более 10,83 метра, где этот закон неверен, если под пустотой понимать отсутствие вещества). «Чтобы летать, надо иметь крылья» ( в эпоху каменного топора ни реактивного самолета, ни хотя бы поршневого «кукурузника», ни даже самого обыкновенного воздушного шара построить было невозможно).
Человек видел свою природу и правильно говорил о том, что видел.
...Было время, когда меня смущали римские акведуки. Руины этих древних водоводов казались нарушением принципа правильного человеческого видения природы; каменный водовод шел не почти параллельно уровню моря, слегка понижаясь к Риму, а горбами изгибаясь над холмами. Потом я догадался, в чем причина ошибки. О том, что Земля круглая, римляне еще не знали. Но они знали, что существует горизонт. Почему он существует, им было неизвестно, но объяснение напрашивалось само собой: это возвышенность, за которой идет спуск. Река свободно протекала через эту «возвышенность», изгибаясь вертикально, — значит, и в каменной трубе она должна совершать путь по кривой, подчиняясь профилю местности, — таков, вероятно, был у римлян естественный вывод.
Как видим, и эта редчайшая ошибка древних инженеров была, так сказать, «из лучших побуждений»: правильно увиденное они лишь неправильно объяснили,
Вторая важная причина, по которой нам следует говорить о мире предметных представлений в современной книге о физике, заключается в том, что этот мир не только взлетная, но и посадочная площадка для научного и технического прогресса.
Мы далеко ушли вперед в умственном развитии от наших предков, но физически изменились мало. Весим мы примерно столько же, сколько весили неандертальцы, жившие полмиллиона лет назад; не больше их едим и пьем, бегаем нисколько не быстрее. Не дальше предков мы видим без приборов а с точки зрения оптики видим внешне то же самое, что увидели бы и они. Технический, научный и философский прогресс не превратил человека в сверхчеловека.
Космонавт Алексей Леонов сделал первую в истории человечества «разминку» в мировом пространстве, но в этот «чистый» космос он не просочился сквозь стенки корабля, как электрон сквозь «потенциальный барьер» (есть такая
на первый взгляд непроницаемая перегородка в мире простейших частиц материи, через которую они, однако, иногда просачиваются), а вышел через люк, как это сделал бы и Аристотель.
Наука движется вперед, а плодами ее пользуется все то же существо, для которого «солнце всходит и заходит». На языке предметных представлений человек учился познавать природу, на этом же родном для него языке наука рассказывает ему о своих успехах.
Похоже на возвращение из-за границы. Зная иностранные языки, можно, путешествуя, увидеть многое, многое понять. Но у родного очага надо рассказывать о виденном на языке, понятном окружающим. Иначе не поймут, скажут, что даром съездил.
АРИСТОТЕЛЬ И ГАЛИЛЕЙ
— Может ли сплошной кусок металла свободно парить в воздухе? Опыт производится в обыкновенной комнате (можно и на улице), никакие магнитные, центробежные и иные силы на него не действуют.
Я не слышал положительного ответа на этот вопрос, хотя задавал его ребятам нередко. Между тем ответ должен быть именно таким. Сейчас делаются проволочки толщиной в несколько микронов (тысячных долей миллиметра), и они парят в воздухе как пушинки.
— Если бы вы сказали не «кусок» металла, а «кусочек» или «крохотуля», я бы догадался, в чем дело, — заметил один школьник после разъяснения.
То, что тело более легкое должно лететь к земле с меньшей скоростью (в пределе — с нулевой, то есть совсем не падать), для мальчика факт само собой разумеющийся. Так же, как инстинктивно верят в этот факт и те туркмены, которые (я слышал это в детстве у себя на родине), обучая малышей езде на лошадях, подбадривают их: «Не бойся, ты же маленький: упадешь — не так ушибешься, как большой». Стоит ли удивляться после этого поразительной живучести втысячелетиях древнейших представлений о движении тел.
История говорит, что лучше всех их выразил, пропустив через умозрительную логику, великий мудрец древности Аристотель. По Аристотелю, движение подчинено следующим основным двум законам:
все тела падают со скоростью, пропорциональной их весу (значит, гиря весом 2 килограмма будет падать вдвое быстрее гири весом 1 килограмм);
если на предмет не действует никакая внешняя сила, он будет пребывать в покое.
Слава этого мудреца была столь велика, а его учение на протяжении без малого двух тысячелетий казалось столь безупречным, что долго никому и в голову не приходило подвергать сомнению эти законы движения. Даже еще в 1500 году говорили: «Чтобы стать ученым, надо наизусть знать Аристотеля. Не обязательно понимать его, но сомневаться в его словах нельзя, это богохульство».
Первым, кто открыто выразил сомнение в аристотелевских принципах движения, был молодой профессор Пизанского университета в Италии Галилео Галилей (1564 — 1642). Живший в эпоху великого переворота в умах и понятиях людей, известную под названием эпохи Возрождения, Галилей внес в нее свой вклад ученого-естествоиспытателя.
Галилео Галилей был виднейшим основоположником экспериментального естествознания. Обучаясь в Пизанском университете, он брал частные уроки математики у известного архитектора и педагога технической академии того времени — Остилио Риччи, и, по-видимому, эти уроки показали молодому Галилею, какие благотворные возможности для познания природы таит в себе сочетание теории и практики.
Став профессором физики и военно-инженерного дела в Падуе, Галилей устроил в своем доме мастерскую и набрал в нее ассистентами толковых ремесленников. Так была основана первая в истории университетская лаборатория.
Практика постоянно давала Галилею могучие импульсы для теоретических исследований. Например, трудности, с которыми столкнулись артиллеристы при вычислении траекторий снарядов, побудили Галилея изучить вопрос о падении тел. Он блестяще решил проблему, сочетая физический эксперимент с теоретическим математическим методом. Оказалось, что, двигаясь в безвоздушном пространстве под действием одной только силы тяготения, тела описывали бы параболическую траекторию.
Около 1600 года в Голландии появился прототип телескопа. Легенда уверяет, что все началось с того, что один ребенок в мастерской Липпершея посмотрел через две линзы в окно и заметил, что предметы, находящиеся снаружи, стали казаться гораздо ближе. «А ведь при помощи таких линз можно издалека наблюдать приближение неприятельских войск!» — сразу сообразили голландцы. Так или иначе, но в 1609 году на основе отрывочных сведений из Голландии Галилей сконструировал уже настоящий телескоп, сперва с трехкратным, а потом и с тридцатикратным увеличением. Гениальный итальянец тотчас направил свой телескоп в небо. За несколько первых же ночей наблюдения он увидел достаточно, для того чтобы разгромить аристотелевскую картину этой стихии. Луна оказалась не идеальной сферой, как считалось раньше, а покрытой «морями» и горами; Венера, как и Луна имела фазы; а Сатурн предстал перед наблюдателем разделенным на три планеты. Были и другие неожиданные открытия.
Галилей сразу почувствовал революционный характер своих наблюдений и в 1610 году опубликовал книгу «Звездный вестник», которая затем оказалась самой ходкой научной книгой того времени.
Галилей всячески превозносил разум и его возможности. В своих трудах и выступлениях он утверждал, что человеческое познание безгранично, что для него не существует никаких пределов. Правда, мир исключительно богат и раз нообразен, никто не решится сказать, что знает все о природе. Но, несмотря на это, писал Галилей: «Человеческий разум познает некоторые истины столь совершенно и с такой абсолютной достоверностью, какую имеет сама природа».
Однажды в присутствии студентов и резко настроенных против него ученых Галилей взобрался на знаменитую падающую башню в Пизе и осторожно бросил с 56-метровой высоты одновременно большое пушечное ядро и маленькую мушкетную пулю. Вопреки тому, что следовало из учения Аристотеля, ядро не упало раньше. Оба предмета ударились о землю одновременно.
В наш век подобный опыт убедил бы всех (если бы оставались неубежденные), что при сравнительно ничтожном влиянии сопротивления воздуха все свободно падающие тела, независимо от веса, падают с одной и той же скоростью. Но мы живем в эпоху высокого уважения к эксперименту. Тогда же, в старину, истины выводились из общих рассуждений, опыт был не в моде. Поэтому лишь один профессор в тот памятный день признал правоту Галилея. Все остальные, присутствовавшие на опыте, хотя, быть может, в душе и чувствовали себя неправыми, резко обрушились на экспериментатора.
KOHEЦ ФPAГMEHTA КНИГИ
|